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Motivation

 Service or data location is regarded as one of the key decision criteria 

for companies in choosing cloud providers

 It is incorporated into many certificates and regulations, especially in 

Europe (BSI C5, EU GDPR, …)

 Depending on the service model, a change of location is not in the 

control of the customer

 Service location might not always be transparent, especially if using 

SaaS



Main Contributions

 Design of a process to classify geographical locations of virtual 

resources using Machine Learning (“location fingerprint”)

 Continuous execution of process including measures to counter the 

“concept drift”

 Experimental evaluation of the process and method using 14 locations 

of Amazon Web Services (AWS)



Adaptive Location 
Classification
Designing the process



The process

 Goal: detect changes in a resource location

 Target: virtual resource with a (public) IPv4 address



Data Collection (Step 1)

 Internet layer

• IPv4 traceroute (path + delay of hops)

• Measurement is executed multiple times; min, max, sd are recorded

 Transport layer

• Delay between SYN and SYN-ACK
of the TCP three-way handshake

 Application layer

• Not in scope of this paper;
however we working on it



Training (Step 2)

 Input is the feature vector collected in the first step

 An appropriate supervised learning algorithm needs to be selected, i.e. 

k-NN or SVM (Linear SVM works good)

 We can calculate the training error ε to adjust parameters of the data 

collection, i.e. number of measurements (10 is good)

 Output: prediction model



 To classify locations at a latter stage

• Collect samples again (same as in the first step)

• Apply the training model to let the classifier classify a location

 We do not want to rely on a single classification because of training 

errors

 Solution: Consider a sequence of location detections within a time 

interval by introducing an invalidation window size 𝑤𝑙
− ≥ log 𝑣𝑙

−

log 𝜀

• Can be configured by a parameter 𝑣𝑙
−

• Depends on the training error ε

Detection (Steps 5 and 6)



 After detection, we update the training model using the data fed into 

the classifier

 Before adding, we remove potential outliers using appropriate 

algorithms, i.e. one-class SVM

 Stop condition: We define a maximum training error after updating 𝛿𝜀, 

if the training error ε exceeds this, the process is stopped

 The new training error automatically configures the invalidation 

window size 𝑤𝑙
− (the higher the error, the larger the window)

Updating (Steps 4, 7 and 8)



Evaluation
Trying it out…



Setup in AWS

At the time of the experiment, 16 geographic regions in AWS

1 region = multiple availability zones (usually 2-3)



 14 EC2 instances in 14 regions (excluding Beijing and AWS Gov Cloud)

 Instances with public IPv4 address with security groups that enable 

ICMP and SSH

 Origin of measurement was also in AWS, Frankfurt

Setup in AWS



 mtr to gather traceroute and nping to collect TCP delay (port 22)

 Experiment duration

• 17th December 2016 – 23rd December 2016

• 15th December 2016 – 3rd January 2017

 In total 139699 delay measurements

Data Collection



 Implemented using scikit-learn using the LinearSVC classifier

 10% of the data used as the training set

• Upper bound on the training error of  𝜀 = 0.0327

• We tolerate training error after updating 𝛿𝜀 < 0.35

Training



Detection

 Remaining 90 % of the dataset are 

used as the test set

 Split up in 898 successive batches

 Each batch simulates the Collect 

new samples step of the process

 Location is predicted and compared 

to the expected value



Observed training error Invalidation window size

Training error vs. window size



 Test accuracy varies between 73.57 % and 100 %

 However, during the experiment, the invalidation window size was 

never exceeded

 As expected, no location change was observed during the experiment

Result



Conclusions
… and Future Work



 Introduction of an adaptive process to detect changes in the location 

of virtual resources

 Demonstration of feasibility by evaluating 14 AWS regions

 SVM classifier performed very well during evaluation (avg 92.96 %)

Conclusions



 We need to further study the affect of L2/L3 load balancers on the 

measurements

 Extend research from service location to data location

 Investigate performance of other classifiers, such as Random Forest

 Apply more sophisticated methods to detect concept drifts

Limitations and Future Work



Questions?


