\

ANDROID OS SECURITY:
RISKS AND LIMITATIONS

A PRACTICAL EVALUATION

RAFAEL FEDLER, CHRISTIAN BANSE, CHRISTOPH KRAUSS, AND VOLKER FUSENIG 5/2012

\|

~ Fraunhofer

AISEC

Android OS Security: Risks and
Limitations

A Practical Evaluation

Version 1.0

Rafael Fedler, Christian Banse, Christoph Kraul3, and Volker
Fusenig

Contact: volker.fusenig@aisec.fraunhofer.de

AISEC Technical Reports
AISEC-TR-2012-001
May 2012

Fraunhofer Research Institution AISEC
Parkring 4
85748 Garching

mailto:
mailto:

Abstract

The number of Android-based smartphones is growing rapidly. They are increas-
ingly used for security-critical private and business applications, such as online
banking or to access corporate networks. This makes them a very valuable tar-
get for an adversary. Up to date, significant or large-scale attacks have failed,
but attacks are becoming more sophisticated and successful. Thus, security is of
paramount importance for both private and corporate users. In this paper, we
give an overview of the current state of the art of Android security and present
our extensible automated exploit execution framework. First, we provide a sum-
mary of the Android platform, current attack techniques, and publicly known
exploits. Then, we introduce our extensible exploit execution framework which
is capable of performing automated vulnerability tests of Android smartphones.
It incorporates currently known exploits, but can be easily extended to integrate
future exploits. Finally, we discuss how malware can propagate to Android smart-
phones today and in the future, and which possible threats arise. For example,
device-to-device infections are possible if physical access is given.

NES Research Department at Fraunhofer AISEC

The Fraunhofer Research Institution for Applied and Integrated Security AISEC! is one
leading expert for applied IT security and develops solutions for immediate use, tailored
to the customer’s needs. Over 80 highly qualified employees covering all areas of IT se-
curity make such customized services possible. Fraunhofer AISEC is organized into three
different research and development divisions. They focus on hardware security as well as
the protection of complex services and networks. Clients of Fraunhofer AISEC operate
in a variety of industrial sectors, such as the chip card industry, telecommunications, the
automotive industry, and mechanical engineering, as well as the software and health-
care industries. Fraunhofer AISEC was founded in 2009 as an independent research
organization within the Fraunhofer-Gesellschaft.

"http://www.aisec.fraunhofer.de/

Fraunhofer AISEC 3
Android OS Security: Risks and Limitations

http://www.aisec.fraunhofer.de/
http://www.aisec.fraunhofer.de/

Contents

1 Introduction

2 Android and Android Security
2.1 Android Platform
2.2 File System and User/Group Permissions
2.3 Android API Permission Model and Manifest File
2.4 Android Market ("Google Play”)
2.5 Remote Installation and Uninstallation
2.6 PatchProcess
2.7 SEAndroid.
2.8 AppsandNativeCode,

3 Exploitability and Attack Vectors
3.1 Native Executable Control
3.2 PublicExploits
3.3 Android Permission Model
3.4 Zero Permission URI Handler Remote Shell
3.5 Google Services Authentication Tokens
3.6 Exploit Execution Framework

4 Propagation Scenarios
4.1 Malicious Apps
4.2 Infection via Personal Computers
4.3 Device-to-device Infection.
4.4 Infection via Rogue Wireless Networks

5 Threat Scenarios
5.1 Privacy Issues and Classical Malware Threats
51.1 PrivateTargets
5.1.2 CorporateTargets
5.2 MobileBotnets
5.3 GSM-based Pivot Attacks

6 Conclusion and Advisory
6.1 Conclusion
6.2 AdVISOry

References

Fraunhofer AISEC
Android OS Security: Risks and Limitations

12
12
12
14
15
16
16

19
19
20
21
22

24
24
24
26
27
27

29
29
30

31

1

Introduction

During recent years, the share of smartphones in overall handheld mobile com-
munication device sales has drastically increased. Among them, the Android op-
erating system by the Open Handset Alliance, prominently led by Google Inc., is
market dominating. In Q3 2011, 52.5% of all devices sold were Android devices,
followed by Symbian (16.9%) and Apple’s iOS (15.0%), according to Gartner
analysis [1].

With the widespread use of smartphones both in private and work-related ar-
eas, securing these devices has become of paramount importance. Owners use
their smartphones to perform tasks ranging from everyday communication with
friends and family to the management of banking accounts and accessing sensi-
tive work-related data. These factors, combined with limitations in administrative
device control through owners and security-critical applications like the Mobile
TAN for banking transactions, make Android-based smartphones a very attrac-
tive target for attackers and malware authors of any kind and motivation. Up
until recently, the Android Operating System’s security model has succeeded in
preventing any significant attacks by malware. This can be attributed to a lack of
attack vectors which could be used for self-spreading infections and low sophis-
tication of malicious applications.

However, emerging malware deploys advanced attacks on operating system com-
ponents to assume full device control. We developed an extensible exploit execu-
tion framework to test existing and future exploits in a controlled environment.
This framework can also serve to analyze exploitability of devices with specific test
sets and payloads. Additionally, common malware behavior is emulated, such as
dynamic configuration and exploit download from a remote web server.

This paper gives a short, yet comprehensive overview of the major Android se-
curity mechanisms. It also discusses possibilities to successfully infiltrate Android-
based smartphones through recent attack means. Both pre-infection (propaga-
tion) and post-infection (threat) scenarios will be illuminated. We will also take
a look at the implications by current developments for future propagation mech-
anisms. To provide theoretical background, we give a short explanation of fun-
damental Android security measures in Chapter 2. After outlining attack vectors,
preconditions and state-of-the-art public exploits in Chapter 3, we introduce our
exploit execution framework in Section 3.6. Subsequently, we elaborate on exist-
ing and prospective possibilities to successfully infect or infiltrate Android-based
smartphones through recent attack means in Chapter 4. Chapter 5 provides an
overview of current and emerging threat scenarios on smartphones both for pri-
vate and corporate targets. Chapter 6 concludes the paper with a summary and
an advisory.

Fraunhofer AISEC 5
Android OS Security: Risks and Limitations

2 Android and Android Security

Mobile operating systems pre-installed on all currently sold smartphones need
to meet different criteria than desktop and server operating systems, both in
functionality and security. Mobile platforms often contain strongly intercon-
nected, small and less-well controlled applications from various single developers,
whereas desktop and server platforms obtain largely independent software from
trusted sources. Also, users typically have full access to administrative functions
on non-mobile platforms. Mobile platforms, however, restrict administrative con-
trol through users. As a consequence, different approaches are deployed by the
Android platform to maintain security.

This chapter briefly introduces the Android platform and its major security mea-
sures, also giving an overview on the measures’ limits, weaknesses and even
exploitability. Discussion will be limited to those functions related to threats elab-
orated on in this paper.

2.1 Android Platform

6 Fraunhofer AISEC

The Android operating system is illustrated in Figure 2.1. Apps for Android are
developed in Java and executed in a virtual machine, called Dalvik VM. They are
supported by the application framework, which provides frequently used func-
tionality through a unified interface. Various libraries enable apps to implement
graphics, encrypted communication or databases easily. The Standard Library
("bionic”) is a BSD-derived libc for embedded devices. The respective Android
releases’ kernels are stripped down from Linux 2.6 versions. Basic services such
as memory, process and user management are all provided by the Linux kernel in
a mostly unmodified form.

However, for several Android versions, the deployed kernel’s version was already
out of date at the time of release. This has lead to a strong increase in vulnerabil-
ity, as exploits were long publicly available before the respective Android version’s
release.

Detailed information on all security features can be retrieved from the Android
Security Overview [2] on the official Android Open Source Project website.

Android OS Security: Risks and Limitations

2 Android and Android Security

APPLICATIONS

Contacts Phone Browser

APPLICATION FRAMEWORK

Window Content View

sy M Manager Providers System

Telephony Resource Location Notification

Fno g i Manager Manager Manager Manager

LIBRARIES ANDROID RUNTIME

Surface Manager Media SQLite Core Libraries
Framework

OpenGL | ES FreeType WebKit

ik Vi
Machine

SGL ssL libc

LINUX KERNEL

Display o Flash Memor, Binder (IPC)
e St B s Driver

¢ ¥ /i Audio Power
Keypad Driver WiFi Driver Drivers Management

Figure 2.1: Android System Architecture [3]

2.2 File System and User/Group Permissions

As in any Unix/Linux-like operating system, basic access control is implemented
through a three-class permission model. It distinguishes between the owner of
a file system resource, the owner’s group and others. For each of these three
entities, distinct permissions can be set to read, write or execute. This system
provides a means of controlling access to files and resources. For example, only a
file's owner may write (alter) a document, while members of the owner’s group
may read it and others may not even view it at all.

In traditional desktop and server environments, many processes often share the
same group or even user ID (namely the user ID of the user who started a pro-
gram). As a result, they are granted access to all files belonging to the other pro-
grams started by that same ID. In traditional environments with largely trusted
software sources this may suffice, though Mandatory Access Control approaches
trying to establish a more fine-grained model do exist, such as AppArmor and
SELinux [4].

However, for mobile operating systems this is not sufficient. Finer permission
distinction is needed, as an open app market is not a strongly monitored and
trustworthy software source. With the traditional approach, any app executed
under the device owner’s user ID would be able to access any other app’s data.

Hence, the Android kernel assigns each app its own user ID on installation. This
ensures that an app can only access its own files, the temporary directory and
nothing else — system resources are available through API calls. This establishes a
permission-based file system sandbox.

Fraunhofer AISEC 7
Android OS Security: Risks and Limitations

2 Android and Android Security

2.3 Android API Permission Model and Manifest File

On installation, the user is presented with a dialog listing all permissions re-
quested by the app to be installed. These permission requests are defined in
the Manifest File AndroidManifest .xml, which is obligatory for shipping
with every Android app.

However, this system has a few flaws:

e All or none-policy: A user cannot decide to grant single permissions, while
denying others. Many users, although an app might request a suspicious
permission among many seemingly legitimate permissions, will still confirm
the installation.

e Often, users cannot judge the appropriateness of permissions for the app
in question. In some cases it may be obvious, for example when a game
app requests the privilege to reboot the smartphone or to send text mes-
sages. In many cases, however, users will simply be incapable of assessing
permission appropriateness.

e Circumvention: Functionality, which is supposed to be executable only
given the appropriate permissions, can still be accessed with fewer per-
missions or even with none at all. This point will be explained in detail in
the chapter on attack vectors.

2.4 Android Market ("Google Play”)

8 Fraunhofer AISEC

As anyone can publish an app after registration as a developer for USD25 and
due to its availability to all Android users, the Android Market, recently renamed
"Google Play”, was and is the main channel of malware distribution.

The majority of all infections is conducted through free illegitimate copies of paid
content. Users unwilling to pay for such content turn to pirated copies, which are
often altered to deliver malicious code. This process, known as “repackaging”,
is illustrated in Figure 2.2. An Android botnet uncovered recently employed this
technique to infect several ten thousand devices, generating a revenue of multi-
ple million dollars annually through premium communication services [5].

As became recently known, Google tests apps for possibly malicious behavior
through a service called “Bouncer” [6]. Bouncer examines apps submitted to the
Android Market automatically by execution inside a virtual Android environment
in Google’s cloud infrastructure. In case of malicious code detection, manual
analysis is performed to prevent false alarms.

Although malware download numbers decreased since the installation of Bouncer,
this system does not provide security against modern attack approaches. Dynam-
ically provided exploits which were not initially shipped with the original app will

Android OS Security: Risks and Limitations

2 Android and Android Security

App Developer

1) Uploads...
=) Up

Legitimate App

|

Legitimate App

2) Downloads...

Malware Author

3) Repackages
legitimate app
with malware

4) Distributes pirated app

Passwords
Bank Account Details
Documents.

Contact Data

5) User downloads pirated
app; gets infected

User
6) Trojaned app transmits
user data to malware
author

Figure 2.2: Repackaging Process

successfully avoid detection, especially if only downloaded at the malware au-
thor's command. For this objective, malware authors may delay downloading of
exploits until publishing to the Android Market is completed. It is also question-
able whether Bouncer is able to identify unknown or altered exploits.

In conclusion, Bouncer may aid against obviously malicious app. This includes
apps which do not rely on dynamic and platform-specific privilege escalation ex-
ploits or implement all spying or remote control functionality in Java. Against
more sophisticated attacks, Bouncer does not prove effective.

Fraunhofer AISEC 9
Android OS Security: Risks and Limitations

2 Android and Android Security

2.5 Remote Installation and Uninstallation

Google possesses the ability to remotely remove or install any app from/to all
Android devices. It is used for the removal of malicious applications and the
addition of new services to phones which may require installation of new apps.

This is accomplished through the Android Market protocol’s REMOVE_ASSET
and INSTALIL_ASSET commands. The latter is in fact used for normal installa-
tion of app package (APK) files through the Android Market as well. Functionality
is provided by the GTalk service which is always active on an Android device and
listening for protocol commands. When installing an app from the Android mar-
ket, the “Install” button triggers Google servers to push an INSTALL_ASSET
command to the phone, forcing it to download and install the specified app
[7, 8].

However, man-in-the-middle attacks between an Android device and Google
servers may grant an attacker the possibility to push malware to an Android
device. These attacks may be accomplished through different methods, such as
successful compromisation and manipulation of SSL-secured communication of
end-user devices with Google servers. Rogue wireless access points may imper-
sonate Google servers or redirect traffic destined for Google to servers under an
attacker’s control.

2.6 Patch Process

10

Fraunhofer AISEC

The Android OS patch process is a complex and time-consuming combined effort
with many parties involved. After a vulnerability has been discovered in an An-
droid OS component, Google has to develop and push out a patch. This patch
is merged with the Android OS source code, which is then provided to device
manufacturers. They adjust the new code base to their devices, affecting not
only original equipment, but also handsets specifically produced for carriers or
geographical regions. This may include branding, software-enforced usage lim-
itations (e.g., prohibition of tethered network access) or even special hardware
features. Finally, a system image (“ROM") has to be generated and distributed
over the air to customer devices for installation. Erroneous installation images
may immediately render customer devices unusable.

The multiplicity of existing devices and the need for adjustments for carriers and
regions make the Android patch process a slow matter. It requires strong preci-
sion and much manpower and finances. Until a security patch reaches customers,
weeks or even months may pass. Due to the aforementioned reasons, many
manufacturers even decide to not provide older devices with updates at all. Thus,
many devices remain unpatched for a long time, or even forever. Even though
newer devices may not be vulnerable to attacks, many older devices continue to
be in use by customers and can be compromised easily [9].

Android OS Security: Risks and Limitations

2.7 SEAndroid

2 Android and Android Security

The United States’ National Security Agency has recently announced the com-
mencement of the SEAndroid (Security Enhanced Android) project as an addition
to the Android kernel [10]. Similarly to the well-known and widely deployed
SELinux Linux kernel patch, the SEAndroid project aims to establish a fine-grained
Mandatory Access Control model. It is further adjusted and extended to meet the
requirements which arise on the Android platform, e.g., to secure inter-process
communication [11].

Once integrated into Android, SEAndroid may indeed prevent some of the at-
tacks presented in Chapter 4. The most useful feature is the monitoring of exe-
cutability of binaries in the root file system. If execution of non-system binaries
or of files saved after the installation of any specific app is prohibited, any cur-
rently known root exploit would be successfully prevented. Thus, exploitability of
Android devices would be reduced significantly. This has already been proven to
prevent many publicly known exploits [12]. Other means of privilege escalation
and data leakage, such as unwanted inter-process communication, can also be
prevented.

SEANdroid is still in a very early development stage. It is unknown when or if
SEANndroid will be integrated into the default code base of the operating sys-
tem.

2.8 Apps and Native Code

Android apps are developed in Java and executed inside the Dalvik Virtual Ma-
chine, a register-based Java Virtual Machine. Each app receives its own Dalvik
VM instance and user ID, hence separating process memory and files through
means of the Linux kernel. Apps authored by the same developer may share the
same user ID, if chosen by the developer. System resources may only be accessed
by apps through APl methods provided by the Dalvik VM.

These limitations make attacks on the underlying operating system from Android
apps nearly impossible. However, native ARM architecture code can be compiled
for Android devices; both the Linux kernel and essential libraries are implemented
in C (cf. Figure 2.1). Native code may even be called from within Android apps,
be it for user-desired or malicious usage. As native code is executed outside
the Dalvik VM, it is not limited to APl methods, thus receiving more direct and
uncontrolled access to the operating system core.

Fraunhofer AISEC ‘I ’I
Android OS Security: Risks and Limitations

3 Exploitability and Attack Vectors

Multiple security holes have been found in different components of the Android
operating system. Up until now, they have primarily served to grant device own-
ers administrative privileges on their devices (“rooting”). Only recently malware
authors have begun utilizing such holes and publicly available exploits for mali-
cious code. In this chapter, we introduce those exploits and further attack vectors.
An assessment of malware utility of these exploits was performed using our ex-
ploit execution framework, presented in Section 3.6.

3.1 Native Executable Control

All current exploit-based attacks depend on the ability to execute native code. It
is the most vital condition for attacks which let an attacker assume full control
over a device. As native code is not executed inside the Dalvik VM, it poses a
much higher risk to the Android OS core than usual apps.

Restriction of the privilege to set the executable bit for files, e.g., to the root
user and the Market app, would significantly reduce exploitability of Android
devices. As a result, apps would no longer be able to download and execute
native binaries dynamically. However, setting the executable bit through user-
mode options such as chmod is currently not monitored or controlled at all.
SEANndroid, although in an early development stage, has demonstrated the high
effectiveness of this measure (cf. Section 2.7). As integration of SEAndroid into
the default Android code base is uncertain and not to be expected soon, native
code exploits will remain the biggest attack vector.

3.2 Public Exploits

12

Fraunhofer AISEC

In the following, an overview of publicly known exploits will be given, including
their usability for malicious intent and target operating system versions. These
exploits have been tested in practice through our malware execution framework,
explained in detail in Section 3.6.

Since some exploits depend on permissions available only to the shell user, these
cannot be utilized for in-app privilege escalation to gain root access. Up to date,
they are only used for granting users full administrative access (“rooting”). How-
ever, as these exploits can be executed by the shell user via the Android Debug
Bridge, they can be used for device-to-device or PC-based infection. The follow-
ing table names all publicly known exploits, their Common Vulnerabilities and

Android OS Security: Risks and Limitations

3 Exploitability and Attack Vectors

Exposures (CVE) number and affected Android versions. Basic behavior is de-
scribed and usability for in-app exploitation, i.e. without USB access, is denoted.

Vulnerable
Android Version

Name

Description

CVE

<2.2

Use-After-Free
Webkit Vulnerability

Remote arbitrary code ex-
ecution through NaN han-
dling due to lacking floating
point number validation

CVE-2010-1807

2.1,22,23

Focus Stealing Vul-
nerability

Any app may steal another
app’s focus and display its
own Activity windows above
the other app’s, effectively
making it impossible for a
user to determine that this
Activity origins from another
app. This allows for display-
ing login dialogs for stealing
user credentials.

TWSL2011-008

< 2.1

Exploid

Hotplug Exploit, usable for
malware

CVE-2009-1185

2.2.0,
2.2.1/2.2.2

some

RageAgainstTheCage,
Zimperlich

RLIMIT_NPROC exhaustion,
causing dropping privileges
through suid() to fail be-
cause suid() cannot be called
anymore — Zimperlich usable
for malware

“CVE-2010-EASY"!

< 223, 2.3[0-
3], 3.0

GingerBreak

mPartMinors[] (NPARTS) out
of bounds write — can be
used for malware

CVE-2011-1823

<222

psneuter,
KillinglnTheNameOf

Neuters the Android prop-
erty Service, which is
checked by adb when
starting up to determine
whether it should run as
root or with low privileges.
Variant “KillingMeSoftly”
usable for malware.

CVE-2011-1149

22,23

ZergRush

libsysutils root exploit use-
after-free, not usable for in-
app malware

CVE-2011-3874

4.0.[0-3]

mempodroid

Unauthorized write access
to other processes’ memory;
not usable for in-app mal-
ware: adb access required
for exploitation

CVE-2012-0056

"no official CVE

Fraunhofer AISEC ’I 3
Android OS Security: Risks and Limitations

3 Exploitability and Attack Vectors

3.3 Android Permission Model

14

Fraunhofer AISEC

As shown in [13], the permissions formally requested by an app at installation
time through its manifest file do not have to match those actually made use of.
Hence, it is completely impossible for a user to determine what activities an app
performs with the permissions it has requested.

There are several examples of actions which can be performed without the proper
permissions or without any permissions at all. Some of these actions are particu-
larly valuable for malware purposes:

e RECEIVE_BOOT_COMPLETED: This is a permission enabling an app to
start at boot — malware may start automatically and run unnoticed.

e START_ON_INSTALL: Enables an app to start up automatically right
after installation.

These two permissions — especially when not formally requested and presented
to the user — significantly simplify malware infection and camouflage. Any app
on the Android market may serve as a downloader and installer for any other
malicious app. This functionality requires only very few lines of code. The payload
can easily be camouflaged as temporary data or even hidden inside seemingly
legitimate program data. For example, a binary or APK file can be stored behind
an image file’s actual data section.

After installation, the two aforementioned capabilities suffice to immediately
create a service which will continue to run until removed, if detected at all.
This is possible although the permissions RECEIVE_BOOT_COMPLETED and
START_ON_INSTALL had not been requested. More permissions can be
made use of as well without a formal request, such as uploading or downloading
data from the Internet by pointing the default browser to certain URLs.

Furthermore, the Android logging service has proven very effective for access to
all kinds of data. The READ_LOGS permission can substitute the following on
many devices, depending on the Android version and thus the standard apps’
versions installed:

e READ_CONTACTS
e GET_TASKS - every started Activity' is listed in the system’s logs

e READ_HISTORY_BOOKMARKS — opening new web pages is a browser
Activity and thus logged

e READ_SMS

TAn Activity is an Android app component displaying visible information or an interactive dialog
to the user.

Android OS Security: Risks and Limitations

3 Exploitability and Attack Vectors

This does not work on most current Android versions anymore. However, many
apps still log much more data than actually needed, including invoked URLs, mes-
sage bodies, authentication data, geographical coordinates and much more. In
general, users should be very cautious when apps request READ_LOGS permis-
sion on installation to prevent data leakage. Most apps — except for log viewers
— do not need this permission.

A special instance of permission model shortcomings is introduced in the follow-
ing section.

3.4 Zero Permission URI Handler Remote Shell

An approach found very recently [14] does not require any exploit code to be
executed on a target device. Instead, it combines Android API features cleverly
to install a remote shell on an Android device. It builds on the aforementioned
inefficiencies of the permissions model.

Communication from an Android device to a host acting as command-and-control
server is accomplished through a web browser. Any Android app may, without
any formal API privileges required, launch the default web browser and direct it
to any URL through means of an Intent?. URLs, however, may also contain GET-
parameters, which can be used to transmit data from an Android device to a web
server. Issuing such web browser commands can be limited to a time when the
phone is not in use and its display is turned off, thus hiding activity from the user.
This is achieved by polling the power manager system service for the display’s
status through isScreenOn () and requires no privileges as well.

If the permission to access the Internet has been granted to an app on installa-
tion, it does not need to wait for the display to be turned off at all. Instead, it can
retrieve a URL invisibly in the background. Communication from the command-
and-control-server to the Android device can be implemented with zero privileges
too. This can be achieved by registering a URI handler such as “test://” or “my-
mal://" in the app’s manifest file. Upon registration, every URI prepended with
such a protocol specifier will be handed over to the app it is registered to.

To achieve two-way communication, the command-and-control server’s web page,
which is called by an Android device, will contain a redirect instruction to a URI of
the described format. Upon sending the browser to this URI automatically, it gets
passed on to the malicious app. Thus, a full remote shell can be implemented
without any privileges required. It can easily be hidden inside a legitimate app or
installed as a standalone app without device owners noticing.

2 Android inter-process communication message

Fraunhofer AISEC ’I 5
Android OS Security: Risks and Limitations

3 Exploitability and Attack Vectors

3.5 Google Services Authentication Tokens

Researchers from the University of Ulm have discovered a data leakage-related
attack vector of very high relevance for all users of Android versions prior to
2.3.4. It has been found that the default Google “Calendar Sync” and “Contacts
Sync” apps transmit ClientLogin authentication tokens unencrypted [15]. These
authentication tokens can be used for logging into any Google service under the
authentication owner’s identity and are valid for several days. The authentication
tokens captured during the researchers’ tests were in fact valid for 14 days.

Rogue wireless network access points can easily eavesdrop for such authentica-
tion tokens to impersonate the original owner. Subsequently, all data stored on
Google servers can be obtained, including contact details such as phone num-
bers, home and email addresses, calendar data and so on.

Google has provided patches for all versions of the aforementioned standard
apps. However, third-party apps can still authenticate via unencrypted Client-
Login, leaving their users prone to a loss of all information stored on Google
servers.

3.6 Exploit Execution Framework

16

Fraunhofer AISEC

To test functionality of current and future exploits in a controlled environment, we
developed an extensible client-side framework for exploit execution and privilege
escalation. With our framework, we are also able to analyze exploitability of
devices with specific test sets and payloads in a semi-automatic manner. The
framework is similar to Jon Oberheide’s RootStrap proof of concept-app [16] and
to real-world malware such as GingerMaster [17, 18].

Its execution is a multi-staged process, whose general concept is illustrated in
Figure 3.1. On startup, a configuration file is fetched from a remote server. The
framework app extracts information from the configuration file on which exploit
to execute to escalate its privileges and which payload to execute afterward. This
way, easy extensibility of the framework is achieved: New exploits or differing
settings only have to be configured in this file. No source code alterations have
to be performed, as program behavior is dynamically determined through the
configuration file. Thus, our framework can be distributed to many different
devices and executed simultaneously.

After the configuration file has been loaded and parsed, an exploit binary suitable
for the device will be downloaded and executed. Depending on a device’s version,
different exploits are used to gain root privileges.

Upon successful completion, the exploit is supplied with a payload to execute
with root privileges. This payload is again determined by the configuration file
and may be a shell script, a binary or an app installation file.

Android OS Security: Risks and Limitations

3 Exploitability and Attack Vectors

| Startup

Fetch
Configuration File

{Ver: 2.2
Type: RootExpl
File: psneuter}
{Ver: 2.3
Type: RootExpl
File:
GingerBreak)

Build.VERSION

Determine Exploi
Suitable for Android
Version

2.(0-31.[0-3]
3.0

KillinginThe
. . . NameOf/ .
Exploid Zimperlich KillingMeSo GingerBreak
ftly

I |
vy v

Fetch & Execute
Exploit

»

A

Privileges
escalated to

root

Shell script
. Binary file
. App
Installation
File (APK)

Determine Payload

Fetch & Execute Payload
{with root privileges)

Figure 3.1: Exploit Execution Framework Lineout

Through its dynamic exploit download and privilege escalation behavior, which
is also deployed in real-world malware, recognition techniques such as Bouncer
and mobile signature-based antivirus software can be evaded. To avoid recogni-
tion before publishing to the Android Market, exploits will only be supplied once
our framework, or similarly malware, has passed testing and is released to users.
For greater effect, a malware author may choose to distribute exploits to devices
only once a sufficiently big user base has been established. Recognition by mo-
bile signature-based antivirus software can be avoided by altering or obfuscating
exploit binaries.

Our framework app could easily be integrated into, or disguised as, another app.
Naturally, a malware developer will provide decoy functionality with his app to
avoid detection. Exploit downloading and execution would only be triggered
once app installation numbers meet the malware author’s expectations.

Fraunhofer AISEC ‘I 7
Android OS Security: Risks and Limitations

3 Exploitability and Attack Vectors

Thus, our framework emulates the behavior of real-world malware and demon-
strates how detection can be avoided. Through its configurability and extensibil-
ity, it can be used to easily assess the vulnerability of multiple devices to different

exploits. As has also been stated, current and future exploits can be tested in a
controlled environment.

Currently, we are developing an additional framework component enabling An-
droid devices to infect other Android devices via USB.

(o F = = 1540
Basestar

= Fraunhofer

AISEC
Android PoC Exploit Framework
Debug Output:

[##] () 3010-2011 The Android Exploid Crew. 21l nghts
reseryed

[**] Kudes to jenzi, the #brownpants-party, the Open
Source folks

[*#] I].na'nulﬁ for ARM skills and Onkel Budi

[**] donate to 7-4-3-CEweb de if you like
[**] Exploit may take awhile!

+] Detected Frogo!

+] Found system: Ceafd 14189 strompe Oeafid 1chbfid

+] Faund DYMAMIC of size 264 (33 entries)

+] Found GOT- Ce001 4240

+] Using desice fdences/platformizaldfish_mmec 0

] wald: D067 GOT start: D001 420 GOT end- Cai0014300
#] wald: 0067 id=: -3072 fault addr: (0013162

+] fault address in range (0001318, 1de=-3072)

+] Calculated idx - 1998

#] wald: 0818 idx: -000 1953

pwni)
—_J

Figure 3.2: Proof of Concept Malware Debug Screen Capture

’I 8 Fraunhofer AISEC
Android OS Security: Risks and Limitations

4 Propagation Scenarios

For mobile malware, current propagation scenarios significantly differ from those
of desktop malware. Direct self-spreading mechanisms over primary communi-
cation networks known from desktop environments are very unlikely. However,
different approaches exist, which utilize existing infrastructure such as the An-
droid Market and websites. Also, novel approaches such as PC-to-device and
device-to-device infections will be discussed.

4.1 Malicious Apps

Malicious apps are the most common infection channel and are comparable to
trojanized programs on desktop platforms. They provide high convenience for
malware developers, as the Android Market and third-party app markets poten-
tially give access to all Android users. Malicious code can be packaged and redis-
tributed with popular apps. Furthermore, users can choose to allow installation
from websites, which can also be exploited by attackers.

App Markets

Some paid content on the Android market is particularly popular with huge por-
tions of Android users. Thus, a way often taken by malware authors to spread
their malicious apps is the provision of free illegitimate copies of paid content,
infected with the malware author’s malicious code [19]. Users unwilling to pay
for such content turn to these pirated copies and in turn get infected, accounting
for the majority of all malware infections on Android devices by far.

Free content may contain malicious or spying code as well. When providing
functionality popular enough, it is a convenient and safer way to widely spread
malware, as it will not be removed for piracy reasons from the official app market.
Additionally, developers with malicious intents may also develop apps free of any
malicious code at the time of the app’s release. Once a big and trusting user base
has been established, an automatic update can be pushed out. It will contain
malicious code portions and immediately infect every phone with the formerly
non-malicious app installed. Even when a developer has no malicious intentions,
an attacker may specifically try to overtake the Market accounts of popular apps’
developers. The attacker will then push out malware to the original developers’
user base.

An app containing malware will remain in the market until its malicious code
portions are noticed. Typical end-users are very unlikely to identify malicious apps.

Fraunhofer AISEC ’I 9
Android OS Security: Risks and Limitations

4 Propagation Scenarios

This especially applies when decoy features are functioning properly, successfully
averting any suspicion. Also, as pointed out in Section 2.4, Google's malware
recognition can be circumvented. This has been proven by the GingerMaster
malware, which was admitted to the Android Market after deployment of the
Bouncer service. It also applies for other malware which dynamically downloads
its privilege escalation code only after admission to the app market.

Third-party app markets installed on modified operating system distributions
("custom ROMs") are particularly endangered of containing malicious apps. Pi-
rated versions of paid content are considered a feature by many users of such
markets and are thus not removed by the market operators on purpose. Also,
third-party app markets, especially if operated by a non-professional commu-
nity, simply do not have the personnel to closely monitor app uploads. Malware
recognition techniques such as Google’s Bouncer are not deployed. Furthermore,
these community-run app markets do not require a registration fee as opposed to
USD25 of the official market. This should not be underestimated, as it gives the
possibility of easily setting up developer accounts with those markets automati-
cally and free of charge. In the official app market, a malware author would be
charged every time one of their accounts is removed for spreading malware.

Websites

Device owners can configure their devices to allow website sources for app in-
stallation. Those underlie no restriction or monitoring at all, increasing the risk of
installing trojanized apps. Also, when this option is activated, users can be redi-
rected to fake websites supposedly supplying a “critical update”. Based on the
user agent identification string of a device's browser, targeted attacks against vul-
nerable smartphones can be conducted. Rogue networks or attackers may even
be able to rewrite web traffic to replace legitimate apps with malicious ones.

4.2 Infection via Personal Computers

20

Fraunhofer AISEC

Due to a lack of remote exploits for the Android operating system and its se-
curity model, which successfully prevents vulnerable, compromised apps from
modifying any operating system components, device-to-device infections are vir-
tually impossible. This applies for all Android versions prior to Version 3.1., which
features USB host mode. USB host mode can be used to infect other Android-
based smartphones with USB debugging enabled. Versions prior to Version 3.1
account for around 90% of all Android devices as of May 2012 [20], as shown
by Figure 4.1.

However, to achieve higher infection rates on smartphones, malware authors
may turn to desktop computers for smartphone malware propagation in the
future. This seems very likely, given the attractiveness of smartphones as a target
for malware. Technically, desktop computer malware have to implement the

Android OS Security: Risks and Limitations

4 Propagation Scenarios

Android Debug Bridge’s protocol to install arbitrary software on any device with
USB debugging activated.

Android 233 ——

Android 2.2

Android 2.3

Figure 4.1: Android Version Distribution as of May 1, 2012 [20]

Rooting

To date, vulnerabilities are mainly exploited by users to root their phones, mean-
ing to grant the user full administrative access to their smartphone. Such access
is needed for various actions. This includes installation of apps in conflict with the
Android security architecture or removing carrier branding, circumventing app or
usage limitations (e.g., tethering), or even uninstalling provider-installed spyware.
An example of such spyware is Carrier IQ, which is deployed by carriers to retrieve
detailed data on customer device usage behavior. It uses rootkit technology to
keep its activities unnoticed by users [21]. Furthermore, some users may wish to
install modified operating systems on their devices, which is also only possible
with privileged access.

This usage model is not driven by a third party’s malicious intent. However, root-
ing one’s smartphone may introduce higher risks of successful malware infection.
App markets preconfigured for rooted or modified operating systems are not well
monitored and contain many trojanized apps. Furthermore, some modified op-
erating systems are less well maintained than preinstalled ones. They also often
provide facilities for any installed software to easily gain root privileges. In this
case, malicious apps would no longer need to escalate their privileges themselves
through vulnerability exploitation. Thus, rooting a smartphone may pose a high
security risk.

4.3 Device-to-device Infection
As stated in Section 4.2, autonomous device-to-device propagation is currently

not possible. With Android versions 3.1 and 4.0, two major changes have been

Fraunhofer AISEC 2 ‘]
Android OS Security: Risks and Limitations

4 Propagation Scenarios

introduced which may serve for device-to-device propagation:
e USB host mode (Android 3.1)

e Android Beam (Android 4.0), an NFC (Near Field Communication) based
file and data transmission system with a range of approximately 10 cm

USB host mode is very likely to be usable for malware propagation. Similar to
desktop computer propagation, an Android smartphone may use the Android
Debug Bridge to push and install malicious apps to other devices with USB de-
bugging enabled. This may happen both intentionally or unintentionally:

e Targeted attacks may be conducted against single persons. A device owner
only has to leave their device out of sight for a short moment, and an
attacker close by may infect it through plugging a USB cable into it. This
requires only few seconds.

e Unintended device-to-device infections may occur as well. Given an al-
ready infected device, propagation code may run invisibly in background,
waiting for other Android devices to be plugged in. Once two devices are
connected, the host mode-capable device will imitate the Android Debug
Bridge’s protocol and infect the other device.

Android Beam is of limited utility, as it requires user interaction for installation.
For example, a web link to a malicious app can be sent to another Android 4
device via Android Beam, but the user still has to click the link and confirm it.
The limited physical distance reduces malware infection risks even further.

As USB host mode has only recently become available, device-to-device prop-
agation has not yet been reported. However, Android 4 comes shipped with
an adb server which allows remote access via shell on other connected Android
devices. As a result, malware can use the presupplied adb program to install
apps on other devices. Any difficulties in implementing the adb protocol are thus
eliminated. Facilities for device-to-device infections are provided by the Android
operating system.

4.4 Infection via Rogue Wireless Networks

22

Fraunhofer AISEC

Open wireless access points are very attractive for smartphone users, as the
monthly amount of data which can be transmitted in current plans is very lim-
ited. Rogue wireless access points have several options to manipulate data traffic
sent from or to a user’s handheld device. For example, download and installation
requests for apps distributed by single websites instead of the official vendor app
market can be easily redirected to malicious APK files. Even legitimate apps may
be replaced during transmission. Alternatively, users logging into the rogue wire-
less network may be presented with a fake website displaying a “critical update”
to an app installed on nearly all devices such as Google Search.

Android OS Security: Risks and Limitations

4 Propagation Scenarios

Furthermore, the Google Market protocol is capable of forcing devices to install
or remove apps through the INSTALL_ASSET and REMOVE_ASSET com-
mands. If it is possible to impersonate Google servers, manipulate transmitted
traffic or successfully hijack a session and redirect it to own servers, an attacker
might be able to force smartphones into installation of malicious apps. However,
further research into this matter has still to be done.

Fraunhofer AISEC 23
Android OS Security: Risks and Limitations

5 Threat Scenarios

Though conventional desktop computer and mobile device malware share many
threats for affected users, some are exclusive to mobile platforms due to their use
cases and usage environments. This chapter aims to give an overview of threats
for smartphones devices. The implications of mobile botnets and the weakness of
cellular network environments will be discussed. We will also illustrate the impact
of compromised smartphones on private and corporate targets, e.g., financial
fraud and espionage.

5.1 Privacy Issues and Classical Malware Threats

Due to usage scenario integration on mobile devices — most prominently con-
ducting online banking transfers as well as receiving mTANs with the same de-
vice, among others — smartphones have become personal communication cen-
ters, electronic wallets and even workstations. Use cases slowly evolve towards
typical desktop computer fields of application, and even go beyond. Due to
the centralization of potentially critical data, platform openness and limited ad-
ministrative control over a device, as well as presupplied channels for malware
distribution, smartphones become highly valuable targets to attack. In the follow-
ing, attractiveness and threat scenarios will be assessed for private and corporate
targets in particular.

5.1.1 Private Targets

24

Fraunhofer AISEC

Information Leakage through Logging Service

The central Android logging service has proven to be a very rich resource for
various personal information. Many apps tend to write status messages to the
logging service containing parameters which disclose personal details of their
device owners. For example, several GPS-based apps were found to write the de-
vice's geo-coordinates to the logging service in regular intervals, thus providing
full profiles on the device owner’s movements to other apps installed [13]. Some
apps log web requests or other network communication. Thus, by only reading
log files, much sensitive information can be gathered, depending on the apps in-
stalled and their behavior regarding logging. For more details, see Section 3.3.

Android OS Security: Risks and Limitations

5 Threat Scenarios

Online Banking

Online banking transactions are often confirmed and authenticated via the mTAN
method. Since the abandonment of printed iTAN lists by many banks, popularity
of this method is increasing rapidly, as it is considered easier by customers than
TAN generators. In both cases — when a smartphone is only used to receive
mTANs or when used to issue transactions as well — the user’s bank account is
put at high risks, if his device is compromised.

On infected phones, login credentials for online banking portals entered by the
device owner can be recorded and forwarded easily. This applies when a com-
promised smartphone is used for receiving mTANs and for issuing transactions,
or even when used only to log in to the banking account to check its balance.
Only logging in once is sufficient for an attacker to withdraw all money from an
mTAN-protected bank account, as ordering a transaction and intercepting the
mTAN text message is trivial. Under the Android operating system, an app can
register to receive SMS messages before the phone’s own messaging application
through the RECEIVE_SMS permission. Even without preemptive interception,
an attacker only would have to react quickly enough to confirm the transaction
after parsing the respective SMS message via the READ__SMS permission.

Even when the smartphone is only used to receive mTANSs, it may be used to with-
draw money from the device owner's bank account under one of the following
conditions:

e Both desktop computer and smartphone of one person are under the same
attacker’s control. This scenario seems very likely in the future, given the
circumstances pointed out in Section 4.2. A personal computer infected
with any common malware can easily infect a plugged-in smartphone with
USB debugging enabled.

e \With the information found in a smartphone’s messaging application, such
as email and SMS messages, targeted phishing or social engineering at-
tacks can be carried out easily. Due to the attacker’s knowledge of the
owner’s communication, such attacks can be conducted in a very sophisti-
cated and convincing way. Hence, infection of the user’s desktop computer
would not be necessary; compromisation of their smartphone suffices.

Contact Information, Location Data, Credentials and Private Details

Espionage, communication eavesdropping, blackmailing, botnet formation, col-
lecting valid email addresses for spam mailing and recording of sensitive infor-
mation such as login credentials or credit card data are just some of the classical
applications of trojan software. All of these apply for mobile platforms as well.
In some cases, they may even be more dangerous on mobile devices: Users are
less cautious and store a lot of information and communication centrally.

For convenience reasons, app credentials are retained unencrypted or only obfus-
cated. When encrypted, the corresponding key is usually saved in plain text and

Fraunhofer AISEC 2 5
Android OS Security: Risks and Limitations

5 Threat Scenarios

easily available. This way, users are not forced to enter passwords on a regular
basis. As a result, obtaining credentials for any app is trivial, given root privileges.
[22]

Multiple real-world espionage cases have gained some attention recently and
similar scenarios will become more common, due to thriving smartphone num-
bers and increasingly sophisticated attacks. Best known is the News of the World
eavesdropping case in which the Murdoch-owned newspaper spied on celebrities
and politicians as well as on abduction or even murder victims. Although these
targeted privacy breaches were not technically sophisticated, they demonstrate
very well what can be done with mobile spyware.

Through the possibility of targeted infection of end-user devices as pointed out
in Section 4.3, single persons can be attacked successfully in public places such
as cafés during short moments of inattention. These attacks can be of high
effectiveness when targeting persons of political, military or corporate power or
interest.

5.1.2 Corporate Targets

Industrial espionage is one of the biggest threats for medium to large sized enter-
prises and even to whole economies. Employee and management workstations
usually underlie close monitoring and are supplied with security patches centrally
and quickly. Corporate security and data policy as well as technology such as
firewalls, intrusion detection systems and content filters account for usually very
high security standards. They aim to prohibit data breaches and compromisation
of employee workstations.

Corporate-supplied smartphones, however, are often less well monitored. Cen-
tral administration without removing all end-user privileges on their devices is an
issue of very high difficulty. Private smartphones usually are not monitored at
all. However, they are often used to enter a company’s networks, store sensitive
work-related documents, carry out work-related communication or are plugged
into workstations’ USB ports for battery charging.

Such usage may not only result in data breaches where an attacker is able to
copy contracts, product designs or other mission-critical documents through a
compromised smartphone. It can also lead to the infiltration of the corporate
network. An infected mobile device, when logged into the company’s network,
may be used by attackers as a base of operations for mapping the company’s
infrastructure, for intercepting internal data traffic or for other forms of attacks
and eavesdropping. Company-provided smartphones often contain VPN login
credentials, giving an attacker corporate network access at will. Furthermore,
operating system security vulnerabilities in USB device management allow for
the infection of computers with malware when a compromised smartphone is
plugged in, e.g., for charging its battery. The Stuxnet malware was capable of

26 Fraunhofer AISEC
Android OS Security: Risks and Limitations

5 Threat Scenarios

spreading from USB memory sticks to industrial control and production machines
in a similar manner [23].

From this single infected machine, a pivot attack can be conducted to infiltrate
the whole corporate network by taking over multiple workstations and servers.
Persons in a respective position within their company such as management or
research and development can also be targeted specifically to eavesdrop on their
communication or steal sensitive documents, without the further aim of infiltrat-
ing the corporate network. They can be followed into public places such as cafés
or restaurants, infecting their smartphones while inattentive through another
smartphone with USB host mode capability (cf. Section 4.3). Alternatively, pro-
fessional attackers may take the device from a jacket’s pocket to infect it within
seconds.

5.2 Mobile Botnets

It is a typical feature of malware to connect infected machines for forming bot-
nets which are useful to their operators for various reasons. Typical botnet func-
tionality includes spam message delivery, stealing credentials (cf.Section 5.1) and
performing denial of service attacks. Due to limited network capacity of mobile
devices and enforcement of bandwidth sharing, the latter is not practicable on
smartphones.

Spam message delivery and obtaining credentials is significantly simplified on
smartphones with privileged access by an adversary. Any credentials for commu-
nication applications can be stolen, once root privileges are acquired [22]. This
way, smartphones can not only serve as spam relays themselves, but provide
spammers with high quality contact details from various services’ address books.
Alternatively, spammers can use stolen credentials to deliver spam messages from
other machines with better network capacity.

5.3 GSM-based Pivot Attacks

The GSM implementation by many base transceiver stations is prone to various
easily conductible attacks. Recent results presented at the 28th Chaos Commu-
nication Congress have demonstrated that most European GSM networks are
not capable of prohibiting impersonation attacks. In these, an attacker fakes the
identity of another GSM subscriber, thus receiving any communication addressed
to the attacked person [24].

Projects such as OsmocomBB' provide alternative firmware for mobile phone
baseband processors. Devices installed with such firmware can easily carry out
eavesdropping attacks on other GSM subscribers. Android devices, too, can be

"http://bb.osmocom.org/

Fraunhofer AISEC 2 7
Android OS Security: Risks and Limitations

http://bb.osmocom.org/

5 Threat Scenarios

flashed with baseband processor firmware. However, there are no known at-
tempts to install modified baseband software with additional features similar
to OsmocomBB. Such firmware would render any Android device capable of
eavesdropping, man-in-the-middle and impersonation attacks on nearby GSM
phones.

Hence, just one mobile device under an attacker’s control in a radio cell is suffi-
cient to attack any other subscriber and to serve as a remote long-range wiretap.
This matter, though theoretically feasible, is of very high difficulty and no further
research into it has been conducted yet.

28 Fraunhofer AISEC
Android OS Security: Risks and Limitations

6 Conclusion and Advisory

6.1 Conclusion

Most current successful attacks can be attributed to negligent user behavior. As
pointed out by recent research and publications, however, attacks on Android-
powered devices are becoming more sophisticated. They are now capable of
spreading mechanisms which do not require explicit user confirmation. Malware
may be delivered unnoticed through desktop computers, other Android devices
or trojanized apps.

Due to the open usage model of the Android market, malicious apps cannot be
avoided completely. Especially pirated apps or multimedia content in popular de-
mand targeting user groups with typically low awareness levels are predestined to
spread to many devices before being identified by Google as malware. Google’s
"killswitch” REMOVE_ASSET command will not be able to delete modern mal-
ware from Android devices in the future. Malicious apps utilizing root exploits
to escalate their privileges can inject code and place binaries outside app stor-
age locations. Removing the APK file and its working directory will no longer
suffice.

Furthermore, targeted attacks are becoming more feasible. USB host mode ca-
pable Android devices may be used to quickly infect USB-debugging enabled
smartphones of persons of military, political or economical interest. This is made
trivial by the adb program which is preinstalled on any Android 4.0 device. Also,
classical desktop malware can serve as a distribution channel, making up for the
lack of self-spreading capabilities of Android malware.

With our extensible exploit execution framework, we developed a test environ-
ment to evaluate and emulate local attacks and malware. We can furthermore
assess the vulnerability of multiple devices easily and simultaneously. Currently,
we are developing an extension to our exploit execution framework which will
demonstrate device-to-device infection capabilities.

Several new and well-known threat scenarios apply for Android smartphones.
These include easily conductible money fraud, industrial espionage, corporate
or military network infiltration and even denial of service attacks on today’s al-
ready heavily loaded mobile networks. Android devices may even serve as re-
mote bases for attacks on other GSM subscribers, though this is regarded highly
improbable.

Fraunhofer AISEC 29
Android OS Security: Risks and Limitations

6 Conclusion and Advisory

6.2 Advisory

30

Fraunhofer AISEC

Given the weak operation environment like cellular networks and considering
the security-critical corporate and private usage scenarios, Android-based smart-
phones should prohibit the execution of any native code added after shipping
completely. This can be accomplished by either providing an option in the oper-
ating system’s settings or a dialog asking permission for setting the “execute” bit
for files.

It may seem like a drastic measure, but the possibility to execute native code
was introduced at a time when processing power was limited. It is stated in the
Android Native Development Kit documentation that one of the main purposes
of native binaries is to execute “self-contained, CPU-intensive operations” [25].
However, new devices are equipped with much more advanced hardware which
no longer requires code parts to be native to run fluidly. Prohibiting non-vendor
native code is the only way to contain exploits against system security flaws which
are not patched quickly enough, or not patched at all.

Alternatively, the privilege of setting the executable bit for files may be limited
to the root user and to the Android Market app. This way, developers may
provide native binaries with their APK files which will be marked executable by
the Market app. Any file added to the file system later on, i.e. not during the
installation process, cannot be declared as executable. SEAndroid has proven
very effective for this objective.

Code signing of native code may also be an option. The number of apps making
use of own binaries is very limited. Thus, it is practicable to require native code
to be signed. The signature might be a verified developer’s, or, after thorough
checking for malicious code portions, may be given by Google. Testing could in-
clude common malware heuristics checks, sandbox execution and system/API call
pattern analysis. Prohibiting execution of non-signed binaries could also prevent
usage of exploits in usual apps.

The flaws of the Android permission model pointed out in Section 3.3 which do
not lead to full compromisation of devices, but to privacy breaches, can only be
corrected by Google. Of course, device manufacturers should be responsible to
supply their customers with security patches. In many cases, customers would
be forced to acquire a new phone to receive security updates, because their old
handheld device is simply abandoned.

The final party involved is the customer. Awareness for security risks on mobile
platforms seems significantly lower than on desktop platforms. Identical or even
more caution should be applied for mobile devices, as the trustworthiness of
software cannot be determined as easily.

Android OS Security: Risks and Limitations

Bibliography

[1]

2]

3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Gartner, “Mobile Device Sales Q3 2011,” November 2011.
http://www.gartner.com/it/page.jsp?id=1848514.

Android Security Team, “Android Security Overview,” December 2011.
http://source.android.com/tech/security/index.html.

Android Team, “What is Android?,” Feburary 2012.
http://developer.android.com/guide/basics/what-is-android.html.
National Security Agency, “SELinux, " January 2009.

http://www.nsa.gov/research/selinux/.

C. Mullaney, “Android.Bmaster: A Million-Dollar Mobile Botnet,” February
2012. http://www.symantec.com/connect/blogs/androidbmaster-million-
dollar-mobile-botnet.

H. Lockheimer, “Android and Security,” February 2012.
http://googlemobile.blogspot.com/2012/02/android-and-security.html.

J. Oberheide, “remote kill and install on google android,” June
2010. http://jon.oberheide.org/blog/2010/06/25/remote-kill-and-install-on-
google-android/.

T. Bray, "Exercising Our Remote Application Removal Feature,” June
2010. http://android-developers.blogspot.com/2010/06/exercising-our-
remote-application.html.

T. Vidas, D. Votipka and N. Christin, “All your droid are belong to
us: A survey of current android attacks,” in 5th USENIX Workshop
on Offensive Technologies, Carnegie Mellon University, August 2011.
http://www.usenix.org/event/woot/tech/final_files/Vidas.pdf.

S. Smalley, “SE Android release.” SELinux Mailing
List, Mailing List Archives (marc.info), January 2012.
http://marc.info/?l=selinux&m=132588456202123&w=2.

National Security Agency, “SEAndroid Project Page,” January 2012.
http://selinuxproject.org/page/SEAndroid.

S. Smalley, “The Case for SE Android,” January 2012.
http://selinuxproject.org/~jmorris/lss2011_slides/caseforseandroid.pdf.

Fraunhofer AISEC 3 ‘]
Android OS Security: Risks and Limitations

Bibliography

32

Fraunhofer AISEC

[13]

[14]

[15]

[18]

[19]

[21]

[22]

[23]

[24]

[25]

A. Lineberry, D. Richardson and T Wyatt, “These Aren’t
The Permissions You Are Looking For,” in DEF CON 18, Au-
gust 2010. https://www.defcon.org/images/defcon-18/dc-18-
presentations/Lineberry/DEFCON-18-Lineberry-Not-The-Permissions-You-
Are-Looking-For.pdf.

T. Cannon, “No-permission android app gives remote shell,” December
2011. http://viaforensics.com/security/nopermission-android-app-remote-
shell.html.

B. Konigs, J. Nickels and F. Schaub, “Catching AuthTokens in the Wild - The
Insecurity of Google’s ClientLogin Protocol,” June 2011. http://www.uni-
ulm.de/en/in/mi/staff/koenings/catching-authtokens.html.

J. Oberheide, “Android Hax,” in SummerCon, June 2010.
http://jon.oberheide.org/files/summercon10-androidhax-jonoberheide.pdf.

X. liang, “GingerMaster: First Android Malware Utilizing a
Root Exploit on Android 2.3 (Gingerbread),” August 2011.
http://www.cs.ncsu.edu/faculty/jiang/GingerMaster/.

D. Fisher, “GingerMaster Malware Seen Using Root Exploit for Android Gin-
gerbread,” August 2011. http://threatpost.com/en_us/blogs/gingermaster-
malware-seen-using-root-exploit-android-gingerbread-081811.

Lookout Mobile Security, “2011 Mobile Threat Report,” 2012.
https://www.mylookout.com/_downloads/lookout-mobile-threat-report-
2011 .pdf.

Android Team, "Platform Versions,"” February 2012.
http://developer.android.com/resources/dashboard/platform-versions.html.
T. Eckhart, "Carrier 1Q,” November 2011.

http://androidsecuritytest.com/features/logs-and-services/loggers/carrieriqg/.

Android Bug Tracker, “Issue 10809: Password is stored on disk in plain text,”
August 2010. https://code.google.com/p/android/issues/detail?id=10809.

M. Brunner, H. Hofinger, C. Krauss, C. Roblee, P. Schoo and S. Todt, “Infil-
trating Critical Infrastructure with Next-Generation Attacks - W32.Stuxnet
as a Showecase Threat,” December 2010.

K. Nohl and L. Melette, “Defending mobile phones,”
in 28th Chaos Communication Congress, 2011.
http://events.ccc.de/congress/2011/Fahrplan/attachments/1994_111217.SRLabs-
28C3-Defending_mobile_phones.pdf.

Android Team, “What is the NDK?,” January 2012.
http://developer.android.com/sdk/ndk/overview.html.

Android OS Security: Risks and Limitations

	1 Introduction
	2 Android and Android Security
	2.1 Android Platform
	2.2 File System and User/Group Permissions
	2.3 Android API Permission Model and Manifest File
	2.4 Android Market (''Google Play'')
	2.5 Remote Installation and Uninstallation
	2.6 Patch Process
	2.7 SEAndroid
	2.8 Apps and Native Code

	3 Exploitability and Attack Vectors
	3.1 Native Executable Control
	3.2 Public Exploits
	3.3 Android Permission Model
	3.4 Zero Permission URI Handler Remote Shell
	3.5 Google Services Authentication Tokens
	3.6 Exploit Execution Framework

	4 Propagation Scenarios
	4.1 Malicious Apps
	4.2 Infection via Personal Computers
	4.3 Device-to-device Infection
	4.4 Infection via Rogue Wireless Networks

	5 Threat Scenarios
	5.1 Privacy Issues and Classical Malware Threats
	5.1.1 Private Targets
	5.1.2 Corporate Targets

	5.2 Mobile Botnets
	5.3 GSM-based Pivot Attacks

	6 Conclusion and Advisory
	6.1 Conclusion
	6.2 Advisory

	References

