
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Development of a Co-Simulation framework
to analyse attacks and their impact

on Smart Grids

Alexander Giehl

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Development of a Co-Simulation framework to analyse
attacks and their impact on Smart Grids

Entwicklung einer Co-Simulationsumgebung zur
Analyse von Angriffen und deren Auswirkungen auf

Smart Grids

Author: Alexander Giehl
Supervisor: Prof. Dr. Claudia Eckert
Advisors: Dr. rer. nat. Christoph Krauß

Norbert Wiedermann, M.Sc.
Dipl.-Inf. Thomas Kittel

Submission Date: July 15, 2013

I assure the single handed composition of this master’s thesis only supported by declared
ressources.

Munich, July 15, 2013 Alexander Giehl

Abstract

Smart Grids are a new type of electrical grid combining traditional power networks with
modern information and communication networks. Smart Grids meet the challenges of
depleting fossil fuels and increasing energy demand by introducing a larger portion of re-
newable energy sources to the energy mix. Smart Grids utilize communication networks
to provide high flexibility and reliability. For example, dynamic storage of energy genera-
ted from weather-dependent sources is necessary. As a result, components of power and
communication networks have become increasingly more interconnected.
This trend has lead to computer networks previously closed off from the outside world
being connected to public networks. Security in those networks has been neglected during
their isolation from other communication networks. This has implications on the security
of supply since it creates new attack vectors for criminal individuals and organizations
trying to disrupt the stability of the energy supply for personal gain.
In order to demonstrate how power networks can be affected by attacks propagated though
the underlying communication networks, we propose a security simulation framework.
Existing simulation environments are integrated into a Communication and Power net-
work Co-Simulation (CoPS). CoPS enables the definition of attacks on the data network of
Smart Grids, the simulation of these attacks and the study of their impact on the energy
distribution. Further, CoPS aims at assessing the broader effects of those attacks and, the-
refore, encompasses the domains private consumer and energy distribution.
To show the feasibility of CoPS, two attacks are presented, one targeting the consumers in
the Smart Grid and one the distribution network itself. The results show, that an attacker
with access to the communication network is able to disrupt the energy distribution by
forcing outages and therefore threatening the security of supply.

vii

Zusammenfassung

Smart Grids sind Energieinformationsnetze, die traditionelle Stromnetze mit moderner
Informations- und Kommunikationstechnik (IKT) kombinieren. Smart Grids begegnen den
Problemen, die sich aus schwindenden natürlichen Ressourcen und gleichzeitig steigen-
dem Energiebedarf ergeben, indem sie eine Erhöhung des Anteils an erneuerbaren Energi-
en im Energiemix forcieren. In einem Energieinformationsnetz werden IKT-Komponenten
verwendet um hohe Flexibilität und Zuverlässigkeit zu gewährleisten, zum Beispiel ist das
Zwischenspeichern von Energie, welche von wetterabhängigen Quellen stammt, nötig.
Bisher sind Datennetze, wie sie im Energie erzeugenden Sektor eingesetzt werden, nicht
an öffentliche Netze angeschlossen. Aufgrund dieser Trennung wurden, um Kosten zu
sparen, Sicherheitsvorkehrungen nur bedingt oder gar nicht umgesetzt. Zur weiteren Ko-
stensenkung und Effizienzsteigerung werden diese isolierten Netze nun aber an öffentli-
che Datennetze angebunden. Nachrüstungen im Bereich der Sicherheit fanden nicht statt
oder wurden nur dürftig umgesetzt. Dies eröffnet neue Angriffsvektoren für kriminelle
Individuen und Organisationen, die versuchen die Stabilität des Stromnetzes zu beein-
trächtigen.
Um demonstrieren zu können, wie Stromnetze durch Angriffe auf die zugehörigen IKT-
Netze betroffen sind, wird in dieser Arbeit ein Framework zur Simulation solcher Angriffe
entwickelt. Dazu werden existierende Simulationsumgebungen für Strom- und Datennet-
ze im Rahmen einer Co-Simulation integriert. Das Framework erlaubt die Definition von
Angriffen auf das Datennetz eines Smart Grids, die Simulation dieser Angriffe und die
Auswertung der Ergebnisse. Es werden dabei jeweils die Domänen Privatkunde und Ver-
teilnetz innerhalb des Smart Grids berücksichtigt.
Um die Anwendbarkeit von CoPS zu demonstrieren, werden zwei Angriffsszenarien vor-
gestellt, wobei eines die Kunden im Smart Grid betrifft und eines das Verteilnetz. Die Er-
gebnisse zeigen, dass ein Angreifer mit Zugriff auf die IKT-Infrastruktur in der Lage ist,
die Energieversorgung empfindlich zu stören und dadurch die Versorgungssicherheit zu
gefährden.

ix

Danksagung

Für ihre Unterstützung bei meiner Masterarbeit möchte ich mich bei den folgenden Perso-
nen herzlich bedanken:

Bei Frau Prof. Dr. Claudia Eckert, Leiterin der Fraunhofer-Einrichtung für Angewandte
und Integrierte Sicherheit (AISEC), dafür, dass Sie mir die Möglichkeit einräumte, meine
Abschlussarbeit an dem von Ihr geführten Einrichtung durchführen zu können.

Bei meinen Betreuern, Herrn Dr. rer. nat Christoph Krauß und Herrn Norbert Wieder-
mann, M.Sc., für Ihre hilfreichen Anmerkungen und für Ihr konstruktives Feedback wäh-
rend der gesamten Arbeit. Beiden möchte ich für das Lesen meiner Abschlussarbeit und
das kritische Korrekturlesen besonders danken.

Mein ganz besonderer Dank gilt meinen Eltern, die mich immer während meines gesam-
ten Studiums unterstützt haben. Ohne Sie wäre diese Abschlussarbeit nicht möglich ge-
wesen.

xi

Table of Contents

Abstract vii

Zusammenfassung ix

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 4
1.3 Structure of the Thesis . 5

2 Background 7
2.1 Smart Grids . 7
2.2 Simulation of Smart Grids . 10

2.2.1 Co-Simulation Primer . 10
2.2.2 Communication Network . 11
2.2.3 Power Network . 14

3 Related Work 17
3.1 Communication/Power Co-Simulation . 17
3.2 Security simulations for SCADA systems . 19
3.3 Scope of the Thesis . 20

4 Concept 21
4.1 Co-Simulation Framework . 21

4.1.1 General Approaches . 22
4.1.2 Custom Approaches . 23
4.1.3 Discussion . 27

4.2 Simulated Attacks . 28
4.2.1 Shutdown Scenario . 29
4.2.2 Price Update Scenario . 31

5 Implementation 33
5.1 Co-Simulation Architecture Overview . 33
5.2 Communication Network Model . 35
5.3 Power Network Model . 38
5.4 Integration . 41

5.4.1 Communication . 41
5.4.2 Simulations . 43
5.4.3 GUI . 47

xiii

Table of Contents

6 Simulation & Results 51
6.1 Experimental Setup . 51
6.2 Shutdown Scenario . 52

6.2.1 Communication Network Model . 52
6.2.2 Power Network Model . 53
6.2.3 Results . 54

6.3 Price Update Scenario . 55
6.3.1 Communication Network Model . 55
6.3.2 Power Network Model . 56
6.3.3 Results . 57

7 Conclusion & Future Work 61
7.1 Conclusion . 61
7.2 Future Work . 62

7.2.1 Power Network Model . 62
7.2.2 Communication Network Model . 63

Appendix 67

Appendix A Naming Conventions for GridLAB-D 67

Appendix B How to use the Framework 69
B.1 Installation of CoPS . 69
B.2 Running the included simulations . 69
B.3 Adding new simulations . 70

List of Figures 71

References 73

xiv

1 Introduction

This chapter provides an introduction to this thesis. The motivation for conducting this
thesis is given in Section 1.1. The problem statement is introduced in the subsequent Secti-
on 1.2. The structure of the thesis is outlined in Section 1.3.

1.1 Motivation

Energy is an important aspect of modern life and international trade [17, 18]. The advance-
ment of industrialization in emerging countries and the continuing worldwide population
growth entails an increase in the worldwide energy consumption. The International Ener-
gy Agency (IEA) predicts a rise in worldwide energy consumption of at least 35% until
2035 [6]. Other scenarios, that are discussed in the study and are dependend on political
factors, have an estimated increase of over 50%. This is due to a projected industrial expan-
sion of the international economy by almost 140%. Another reason is the increase of the
world population by 1.7 billion people until 2035. The growing demand due to this fac-
tors cannot be satisfied by fossil fuels alone. Fossil fuel sources, which make up for 81% of
the worlds energy production by 2012, are depleting. This includes the most widely used
fossil fuels, coal, petroleum and natural gas. Furthermore, the 2011 meltdown of a nuclear
reactor in Fukushima, Japan, after an earthquake and a flood occuring quickly one after
the other, call for more sustainable and safe solutions.
In Germany, a turnaround in national energy policy towards a sustainable economy pas-
sed legislation in the aftermath of Fukushima. The aim is to increase the portion of renewa-
ble energy sources in the energy mix [42]. Moreover, a reduction of fossil energy sources,
primarily coal, and the abolition of nuclear power is part of this turnaround. The projec-
ted outlook for 2030 is given in Figure 1.1. Here, the percentages for the different energy
sources in the energy mix of Germany are given. The figure compares the recorded con-
ditions of 2010 and the projected conditions for 2030. As it is evident, the percentage for
coal is decreasing from 24.3% to 11.7% quite drastically. Nuclear energy production will be
completly phased out by this time. This results in an overall increase of renewable ener-
gy sources by 20%. In addition to the introduction of renewable energy sources, efficient
means for energy distribution are also part of the energy turnaround.
Not only in Germany, but also worldwide, renewable energy is on the rise. Until 2035,
renewable energy is expected to increase its worldwide share in primary energy usage to
31%. Renewable energy is generated from volatile sources like wind, solar, or water power.
In contrast to fossil fuels, these renewable sources are dependent on seasonal conditions,
which are difficult to predict. Furthermore, they are not carbon-based and, therefore, more
environment friendly. New means for energy storage and distribution must be found in
order to ensure the security of supply during peak times. In addition, energy will be pro-
duced decentralizied and feed into the energy distribution network. For example, wind

1

1 Introduction

Petroluem Coal Natural Gas Renewable Nuclear Other

2010 33,80% 24,30% 20,60% 10,80% 8,80% 1,70%

2030 30,50% 11,70% 24% 30,80% 0% 3%

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

40,00%

P
e

rc
e

n
ta

ge

Figure 1.1: Estimated change in the energy mix of Germany until 2030 (Source: [19]).

energy produced at offshore parks in the North Sea needs to be transported to the south
of Germany and solar energy vice versa.
For the reasons stated in this section, the energy sector is subject to great change. A suitable
infrastructure for information and communication technologies is key in this development.
Smart control is necessary to counteract or prevent fluctuation in energy generation from
renewable sources. Moreover, efficient ways for energy storage, distribution, and trans-
portation are needed to ensure power is available when needed, for example during peak
times or in heavily industrialized areas. For this to be possible, more detailed collection of
data, which reflects energy consumption and demand, then currently performed is neces-
sary. Furthermore, this data needs to be exchanged between the different actors found in
the energy sector. This combination of energy and information technology is referred to as
Smart Grid.
Figure 1.2 shows a conceptional illustration of a Smart Grid. The decentralized architecture
is shown as well as the interactions between the different components. Localized energy
production is shown prominently in the figure. On the left hand side, a wind farm is il-
lustrated. The produced energy is stored in large batteries and fed into the grid during
times of high demand. The same is true for energy produced with solar panels, which are
either installed on rooftops of private residences or on top of office buildings. Traditional
energy producers are seen on the bottom of the figure. An industrial and central power
plant, which are integrated into the grid, are shown. Sensors and actuators are present in
the entire Smart Grid. On the one hand, they manage the efficient distribution of energy
in the grid. On the other hand, they are also responsible for detection of disturbances in
the grid. One such disturbance is shown on the right hand side. In the scenario shown
here, the disturbance is due to natural causes (lightning). However, also deliberate attacks
on the Smart Grid could led to disturbances and outages. Since a Smart Grid is a critical
infrastructure, guaranteeing the security of supply is essential and security in Smart Grids
is of paramount interest.

2

1.1 Motivation

Figure 1.2: Conceptual structure of a Smart Grid (Source: [17]).

Attacks on public infrastructure via the communication channels have occurred in the past.
An example of such an attack is the W32.Stuxnet worm, that emerged in 2010 [8]. The net-
works targeted in the affected plant were not even connected to the Internet. It is assumed,
that the alleged attackers used USB devices to plant the worm inside the enterprise net-
work of the target facility. The infected USB devices were transported into the facility by
unsuspecting employees, who used the devices also on their private home computers. The
initial infection occurred on these private machines, which were connected to the Internet.
Other examples of attacks on public infrastructure are Maroochy Shire, Australia, and Oak
Harbor, USA [44]. In Maroochy Shire, the local sewage treatment plant was the target of a
cyber attack. As a consequence, 800 000 liters of untreated water were released in the eco-
system, which caused severe damage to the local flora and fauna. The Davis-Besse nuclear
power plant in Oak Harbor was attacked by the SQL slammer worm and left without a
functioning safety monitoring system for almost five hours.

3

1 Introduction

1.2 Problem Statement

Section 1.1 already mentioned the increasing interconnection of data and energy networks
and the reasons for this development. On the one hand, the expected benefits are of eco-
nomical nature. Energy customers, this includes private as well as industrial customers,
should be enabled to obtain energy when the price for it is currently low. This could redu-
ce the costs for energy intensive operations. For example, if it is of no concern to a private
customer at what time a certain household appliance is started, then the machine could be
started when the price for energy becomes cheap. The incentive for the customer would
be reduction of energy costs. On the other hand, also fluctuations, as they are caused by
renewable energy sources, could be compensated this way. For example, a cold storage
facility could be operated at full power when a large supply of energy is available. When
the facility is cooled down sufficiently, it could be disabled for a certain amount of time
and, therefore, save energy during that time. In addition to the benefits stated above, the
German turnaround in energy policy calls for a dynamic solution to manage energy distri-
bution. Data networks and information processing techniques are well-suited to meet this
challenge.
The communication networks used in industrial production, that are also used in ener-
gy generation and distribution, are currently isolated from other networks. In the process
of introducing Smart Grids, these previously closed networks are connected. They can
be connected using public networks to exchange messages between each other. In Smart
Grids, it is necessary to facilitate communication between the different parts of the grid, for
example for sending price notifications. However, this introduces new attack vectors since
those systems were originally designed to be closed-off and small effort was invested in
security mechanisms. Successfully executed attacks on even one component in the newly
formed network have the risk of cascading through the entire grid and are, therefore, af-
fecting large portions of the entire structure. Examples for attack vectors are (Distributed)
Denial-of-Service, Trojans, Address Manipulation, or Zero Day Exploits.
Studying the effects of such attacks are of paramount interest since Smart Grids are a criti-
cal part of the public infrastructure. However, conducting experiments on the actual public
energy supply is difficult. In addition, the costs for those experiments would be enormous.
Especially in the context of security, experiments on public infrastructure are not feasible.
The risk of causing damage to the grid is not to be disregarded. Furthermore, it may be
difficult to get acceptance for experiments on public infrastructure in the general popula-
tion. In particular, the people in the areas affected by the experiments might initially not
approve of them.
An alternative approach is to conduct the tests inside s simulation by using a model of the
actual system. This enables the examination of attack vectors without conducting experi-
ments in real world infrastructure. By using a reasonable complex model of the Smart Grid,
the results of an attack can be investigated and conclusions can be drawn from the results.
At the moment, no simulators for Smart Grids exist, that encompass the data and the ener-
gy network. In particular, no security simulators for Smart Grids exist, that take a wider
portion of the grid into account. For this reason, existing tools for simulating either data or
energy networks must be combined together towards a joint simulation, a co-simulation.
Such a framework, that enables security studies on Smart Grids, is developed in this thesis.

4

1.3 Structure of the Thesis

1.3 Structure of the Thesis

The thesis is structured as follows: Chapter 2 provides background information on Smart
Grids and the simulation of Smart Grids. Related work for the thesis is discussed in the
subsequent Chapter 3. The scope of this thesis is given at the end of the chapter. The de-
veloped concept of the security framework is presented in Chapter 4. The conceptual ap-
proach for integration of communication and power network within a co-simulation is
explained. The attack vectors for two security relevant scenarios are derived in this chap-
ter as well. A reference implementation of the developed framework concept is described
in Chapter 5. The implementation of the attack vectors is covered in Chapter 6. The results
for the simulated attacks are given subsequently. Conclusions from the presented results
are drawn in Chapter 7. An outlook on future work is is given at the end of the chapter.

5

2 Background

This chapter gives a theoretical overview about Smart Grids and the simulation of them.
Structure and components of Smart Grids, and also SCADA systems, are covered in Sec-
tion 2.1 in an more abstract way compared to Chapter 1. The simulation of these Smart
Grids with current simulation environments is discussed in Section 2.2.

2.1 Smart Grids

There is no strict definition on how to structure the construction of Smart Grids since they
are in the progress of coming into existence. Therefore, this section provides a general
overview of the structure and components of future Smart Grids. Furthermore, security
considerations in regard to Smart Grids are introduced.
Smart Grids are characterized by their decentralized architecture [13]. A variety of hete-
rogeneous components, which are currently found in the traditional energy supply sector,
are linked to one and another to form an interconnected structure. Communication bet-
ween these components occurs on wired or wireless channels, for example UMTS, Wi-Fi,
or Powerline. The different networking technologies are combined together via the Inter-
net to form an integrated structure. This structure is referred to as Smart Grid. It includes,
among others, autonomous components acting as digital meters, called smart meter. Com-
munication between different components might involve different protocols and might,
therefore, require specialized gateway devices translating between protocols [17]. In addi-
tion to the technical components, economical processes are integrated into the Smart Grid
as well, making it a complex and critical part of the public infrastructure.
In the energy sector, but also in other industrial applications, Supervisory Control and Data
Acquisition (SCADA) systems are commonly used. These systems monitor industrial pro-
cesses and are IT-based. An overview about the general architecture of SCADA systems is
given in Figure 2.1. The control station is in charge of the industrial processes to be mo-
nitored. Inside of the control station, work stations used by the operators managing the
systems are located [28]. These stations provide a Human-Machine Interface (HMI) to the
operators. Also, one Master Terminal Unit (MTU) is found at the control station. The MTU
is responsible for the communication to the field devices at the remote sites. The field de-
vices are either Remote Terminal Units (RTU) or Programmable Logic Controls (PLC). They
carry out identical tasks, i.e., acquisition of data by sensor readings. The collected data is
communicated to the MTU at the control station as required via a combination of various
wired and wireless channels. Based on the sensor readings, the MTU enacts controlling
actions for the process. If some action is required, the MTU sends a message containing in-
structions back to the respective field device. The field device in term enacts the specified
actions by the actuators for the technical system.

7

2 Background

MTU

Control Station

RTU/PLCRTU/PLC

Control Station Local LAN

HMI

Remote Sites

System System

ActuatorSensor ActuatorSensor

Wired

Wireless

Sensor data

Control commands

Communication channels:

HMI

Operator

read

send

send

send

send

send

read

send

Figure 2.1: Conceptual view of SCADA system architecture.

8

2.1 Smart Grids

As already indicated, Smart Grids are a critical part of the public infrastructure, meaning
considerations about their security are of paramount importance. SCADA systems, for
example used in power plants, were previously closed off from public communication
networks. Therefore, security was neglected due to performance considerations and con-
venience. Real-time capabilities are important for SCADA systems and security checks,
for example packet filtering, would reduce performance. Also, in case of an emergency it
is desired, that the operator is able to get immediate access to the controlled system wi-
thout further access control. Passwords, if they are used at all, are short and known by all
team members.

Energy Distribution

Maintenance

Customer

Internet
Device

Appliances
Smart
Meter

Gateway
Customer
Network

Service

Market

Local
Network

Field
Device

Internal
Network

SCADA Internet

Decentralized
Energy

Generation Decentral
Energy

Generation

Communication Link

Energy
Generation

Energy
Transmission

NetworkDomain

Component

Figure 2.2: Simplified domains and connections among them (Source (updated): [18]).

The reasons stated here have made SCADA systems a security concern [18]. For security
studies, the Smart Grid has been divided into different domains as shown in Figure 2.2.
The domains typically are energy generation, energy transmission, energy distribution, custo-
mer, market, maintenance, and service. Especially the domains energy distribution and custo-
mer are of particular interest for studying security in Smart Grids, since they are subject
of major change. The reason for this is, that electrical energy will be generated by an in-
creasing amount from renewable sources and, in addition to this, will be obtained from a

9

2 Background

multitude of producers. When the customer domain is taken into account, the main focus
for security relevant studies is on the subdomain of the private customer. In the following,
the domain customer and the subdomain private customer will be used interchangeable. One
of the central component in this domain is the gateway, which allows real-time calculati-
on of the customer’s energy demand. Also, a smart meter and an Internet-enabled device
owned by the customer, e.g., a private PC, are an additional part of this domain. These
components are connected to the customer’s private network, which is in term connected
to the Internet. The customer, or consumer, employs devices using energy, e.g., household
appliances. Some customers also produce energy, for example with solar collectors. If such
energy producers are present, the customer is also referred to as a producing consumer
or prosumer. Both, consumer and prosumer, obtain their required energy from the distri-
bution network. In addition, prosumer feed their locally produced energy into the grid.
The domain energy distribution consists of distribution networks ranging from low voltage
(120V) to middle voltage (max 20kV). The numbers refer to distribution networks inside
the USA (see Chapter 5.3). These networks are locally confined within 100 meters and se-
veral few kilometers. They mostly supply low voltage household appliances located at the
customer. The networks are maintained by the distribution system operator (DSO). The
energy sold by the DSO is usually purchased from power plants, but the DSOs also pro-
duce their own energy in a decentralized manner, for example in wind parks where wind
mills are operated by the DSOs. Currently, the distribution network is operated manual-
ly but this is expected to change towards automated operation using SCADA technology.
In the domains covered above, different actors take an active part. Those actors have dif-
ferent tasks and responsibilities. The actors are referred to as roles. The DSO has already
been introduced. Other roles are, for example, Metering Point Operator (MPO) and Meter
Service Provider (MSP). The MPO is operating the meter, whereas the MSP is reading out
the meter.

2.2 Simulation of Smart Grids

This section provides an overview about the simulation of Smart Grids. Section 2.2.1 mo-
tivates the utilization of modeling and simulation techniques to be used for conducting
research on Smart Grids. It also introduces the concept of co-simulation. Since Smart Grids
combine communication and power networks, existing simulation environments for both
are discussed in Section 2.2.2 and Section 2.2.3 respectively.

2.2.1 Co-Simulation Primer

In the context of this thesis, the term simulation is used to describe a virtual experiment [9].
The experimental setup has been specified in the model together with the parameters for
the experiment. Simulation and modeling are always computer-based when discussed he-
re. A simulator is any kind of framework or software package that allows modeling and
simulation. A communication simulator (CS) is a simulator for packet-based communication
networks, a power simulator (PS) is a simulator for electrical power networks.
The simulation of electrical power networks offers some key benefits over conducting ex-
periments on real world electrical structures. The electrical distribution network is covered

10

2.2 Simulation of Smart Grids

in this thesis. Using the actual distribution network for security penetration tests would re-
quire to take the risk of power outages and damage to the components of the network. This
is economically unfeasible. Also it might be difficult to gain acceptance for such projects
in the population affected by the tests. Even isolated tests of small substructures inside
the electrical network would suffer from this problem. A model of the electrical system to
be studied does not suffer from this drawbacks. Moreover, such models allow for a larger
set of networks to be studied and the parameters of the experiment to be changed more
easily. The inherent drawback of models is, that they only provide an approximation of the
modeled object. Therefore, careful validation of the simulation’s results is necessary. Also,
simulating complex models might require huge computational resources.
A Smart Grid is a hybrid system [43]. It consists of a power and a communication net-
work, both of which are complex systems for simulation on their own. Complex systems
often need to be comprised as a hybrid system model since dedicated simulators for the
system in question might not exist. The hybrid system model combines several partial mo-
dels, which are specified with the respective simulator. For Smart Grids, at least CS and
a PS are needed. The simulation of the partial models is conducted by the corresponding
simulators, however, a mediator is necessary for coordination efforts. This kind of simula-
tion architecture is referred to as a co-simulation.
Co-simulations were originally conceived to combine hardware/software (HW/SW) to-
gether in a simulation environment [46, 41]. HW/SW co-simulations are also called hardware-
in-the-loop simulations, since they introduce a physical component into the simulation run,
for example a smart meter [44]. However, SW/SW co-simulation is also possible and is
in fact easier to implement since HW/SW co-simulations require real-time ability. Any
co-simulation framework, however, will need a way to synchronize the internal clocks of
all simulators involved. This will be further discussed in Chapter 4, where the concep-
tualization of a co-simulation framework capable of simulating Smart Grids is covered.
Although the terms HW/SW and SW/SW imply, that only two simulators are used in a co-
simulation, but several different simulators may be combined together to a co-simulation.

2.2.2 Communication Network

In this section, current frameworks for network simulation are introduced and discussed.
Only freely available, widely used, open-source software packages are discussed. OPNET
and NetSim are also widely used in research but were not considered due to the commer-
cial nature of both products [36].

Network Simulator 2/3

The Network Simulator 2 (ns2) is an event-driven, discrete communication network simu-
lator [39]. Its main area of application is the simulation of IP-based networks. Therefore, it
offers a rich library of different protocols and objects found inside such networks. Ns2 has
originally been developed for Unix platforms, however, it is usable on Windows machines
with Cygwin or comparable tools. It is licensed under the GNU General Public License 2.
Ns2 has been written in C++ and it employs OTcl, an object-oriented extension to the Tool
Command Language (Tcl), as scripting language. Further, it uses the Network Animator
(Nam), an animation tool for visualizing simulated networks.

11

2 Background

Figure 2.3 shows the simplified structure of ns2’s components and also illustrates the net-
work modeling process. The network topology is described in an OTcl script. Each network
component referred to in this file is defined in the Network Objects Library. This library is
part of ns2’s simulation kernel, which has been written in C++ for performance reasons.
The corresponding objects are linked together for usage inside the simulation kernel. This
linkage leads to a tight coupling between the topology description and the implementation
of the objects and protocols. After specifying the network, the OTcl script is interpreted by
an OTcl interpreter. The event scheduler is initialized and executed and then responsible
for the progression of the simulation time. The running simulation and the results of the
finished simulation can be visualized using Nam.

C++ Simulation
Library

Network
Objects

Event
Scheduler

Otcl
Interpreter

Otcl Script Nam

Linkage

Figure 2.3: Structural view of ns2’s main components.

Ns2 is one of the most widely used network simulators in research and is well accepted
in academia. The reason for this is the early introduction of ns2 in 1997 and the constant
development by the community. Ns2 uses obsolete software and its performance is not
as good as the performance of more current network simulators [54]. Many tutorials and
examples have been published over the years, however, the overall documentation for
ns2 remains fragmented. To address the issues of ns2 and to provide a newer tool for
researchers, ns3 was developed [25]. Ns3 is not simply the next version of ns2, instead, it
is a completely different simulator in respect to its architecture. It has a new software core
emphasizing modularity and scalability. The core is written in C++ as well and Python
replaces OTcl as scripting language. Development on ns3 began in 2006 and it has been
actively improved since then. Despite of this, ns3 has not been used widely in research by
now. Moreover, its capabilities currently cannot match those of ns2, making ns3 not yet a
real alternative to ns2.

12

2.2 Simulation of Smart Grids

OMNeT++

OMNeT++ is a discrete event simulator for modeling communication networks [51]. It is
C++-based, open source, and free for non-profit use. Version 4.2.2 of OMNeT++ is discus-
sed here. Version 4.3 was released in April 2013 but a change to the newer version was
not necessary since no features relevant for the work in progress have been added. The
simulator ships with its own, customizable IDE, which is based on Eclipse. Also, it is well
documented.
By design, OMNeT++ has a modular architecture and is a simulator for packet-based net-
works in general. This implies, that OMNeT++ can be, for example, used to study queuing
problems. This open architecture offers more possibilities for modeling but increases the
learning curve as well. The main usage of OMNeT++, however, is simulating communi-
cation networks. The INET package of OMNeT++ contains all libraries necessary for buil-
ding communication network models and running simulations with them. Several proto-
cols, for example TCP, IPv4, IPv6, UDP, PPP, and Ethernet, are included [4]. The package is
also free for non-profit use and includes its own documentation. However, some chapters
in this documentation are unfinished in the manual for Version 2.1 of INET. The chapters
concerned are 1.3, 2.4-2.10, 3.8, 3.9, 6, 7, 10, 13, 14, and 17. Relevant chapters explaining the
usage of the INET framework and its most commonly employed features are fully docu-
mented but for some modeling efforts it might be necessary to study the source code of
INET and the included demo projects in order to get the desired information.
One important property of OMNeT++ is its ability to develop hierarchical models mea-
ning that modeled objects can be subclasses of other objects or being subclassed themsel-
ves. This allows models developed with OMNeT++ to be well structured and reused easi-
ly. OMNeT++ further introduces the possibility of graphical modeling with the Network
Description Language (NED) and its corresponding editor. Figure 2.4 shows the NED edi-
tor during design time, the depicted network is part of the broadcast demo included in
INET. The components selected from the objects palette on the right are placed via drag
and drop in the editor and are connected to each other by clicking. Some simple models
could be completely described with the NED editor without the need for adding source
code [44]. The model descriptions could also be changed without further recompilation.
This introduces a plug and play behavior to OMNeT++.

Figure 2.4: OMNeT++’s NED Editor showing a simple UDP-based network.

13

2 Background

OMNeT++ distinguishes between experiment, model and simulation [52]. Parameters can
be specified in configuration files. By default, the configuration file is called omnetpp.ini.
The parameters affect the properties of different network objects during runtime, for ex-
ample the number of hosts connected to a router. When the simulation is started, OM-
NeT++ loads the parameters from the configuration file and determines the model for the
simulation. The parametrized network is then simulated. With this distinction, it is possi-
ble to allow varying the parameters of experiments with the experimental setup remaining
unchanged.

2.2.3 Power Network

This section gives more details on the simulation of power networks for Smart Grids. Exi-
sting power network simulators can be modified to simulate Smart Grids [37, 23]. Al-
so, isolated models of specific components within Smart Grid, like windmills, are used
in research [44]. However, using a simulator developed specifically for the simulation of
power networks as they occur in Smart Grids requires no modifications. Moreover, it al-
lows a comprehensive study of effects on the whole Smart Grid power structure [10, 31].
GridLAB-D is such a simulator, in fact it is the only open-source simulator for the study
of power networks specific to Smart Grids [12]. For this reason, it is the only simulator
covered in this section. Other commercial simulators for power networks, that have be-
en successfully used in co-simulations, are PSLF and PowerWorld. Also Matlab/Simulink
and Modelica models of power components and small networks are employable.
The core algorithm of GridLAB-D is designed to handle a multitude of independent de-
vices. GridLAB-D utilizes agent-based modeling, meaning it represents processes as dy-
namic systems of interacting agents. These agents represent a variety of different actors
inside a Smart Grid scenario, for example customers trying to minimize the price for ener-
gy. As of May 2013, the current stable version of GridLAB-D is Version 2.2, Version 3.0 is
in development and scheduled for release in the 3rd quarter of 2013.
So far, GridLAB-D has found some use in research. It is actively developed and supported.
Documentation can be found in the official wiki, help with occurring problems is provided
in the technical support forum, which is frequented by the developers [29]. A drawback is
the missing IDE and the lack of graphical support during modeling. Modeling typically is
conducted by using a text editor. The simulation is then started via a command line tool.
It has been announced, that Version 3.0 will include a graphical editor. Visualization of the
simulated structure during runtime is not possible by now as well. Also, the experimen-
tal nature of the generators library may result in problems during modeling. In addition,
GridLAB-D only supports power networks as they are found in the USA. This is due to
the nature of GridLAB-D’s funding by the U.S. Department of Energy.

14

2.2 Simulation of Smart Grids

GridLAB-D ships with different libraries containing various models for components of
Smart Grids. In the following, an overview about the modules included in GridLAB-D 2.2
is given.

• Powerflow
Distribution network model can consist of transformers, regulators, fuses, substati-
ons, capacitors, switches, overhead lines, and underground lines. Available solver
methods for the power flow equations are Forward-Backward-Sweep (FBS), Gauss-
Seidel (GS), and Newton-Raphson (NR).

• Residential
Detailed model for a single family residence with several household appliances, for
example water heaters or dish washers. It represents the customer within the Smart
Grid.

• Climate
Aggregated weather data for several cities in the USA is included. The climate mo-
dels can be used in any simulation affecting, for example, wind mills and solar col-
lectors.

• Generators (experimental, community-developed)
Officially not supported. Models for windmills, solar collectors, DC to AC inver-
ters, diesel generators, and batteries are included. Most of the models are functional,
however, undocumented bugs exist and documentation on the usage of these com-
ponents is scarce.

• Reliability
Definitions and tools for reliability analyses in distribution systems based on the
IEEE 1366-2003 standard [1]. Also opening and closing switches is made possible.

• Tape
Writes the output of the simulation runs. Output is possible to file, to shared memory
or to picture using gnuplot. MySQL access is also possible. However, the correspon-
ding library for MySQL support is only accessible to GridLAB-D developers and
considered to be experimental.

• Market
Wholesale market model enabling the placement of bids into auctions. This way,
price development according to demand is simulated.

• Commercial (unvalidated)
Models for commercial buildings. Currently, only small offices are included but fu-
ture additions are planned.

• PLC (deprecated)
Custom controller models allowing modelers to specify the behavior of components
during runtime. It will not be supported in Version 3.0.

15

3 Related Work

This chapter presents work related to the thesis. In Section 3.1, approaches for communi-
cation and power networks co-simulation are discussed. The provided list makes no claim
to completeness. A comprehensive summary is given in [36]. In Section 3.2, research about
security in SCADA systems is discussed. Here, only research employing modeling and si-
mulation is taken into account. Furthermore, research of theoretical nature not providing
experimental results is omitted as well. The scope of this thesis is given in Section 3.3.

3.1 Communication/Power Co-Simulation

In this section, existing simulation frameworks for communication and power co-sim-
ulation are discussed [36]. The presented frameworks are summarized in Table 3.1. The
name of the framework is given as well as the software packages used for modeling and
simulating the communication and power network parts respectively.

Framework Communication Power
Simulator Simulator

EPOCHS [27] ns2 † PLSF *, PSCAD/EMTDC *
ADEVS [43] ns2 Custom user code
VPNET [35] OPNET * VTB †
GECO [37] ns2 PLSF *
C2WT [11] OMNeT++ † Simulink *
NCSWT [45] ns2 Simulink
SCADASim [44] OMNeT++ Simulink

Tabelle 3.1: Frameworks for communication and power network co-simulation (*commer-
cial, †open source/free of charge).

The efforts for a joint study of communication and power networks were pioneered by
EPOCHS [27]. The EPOCHS framework was developed in 2003 and uses commercial-of-
the-shelf (COTS) products as simulators for the partial models. The simulation of the com-
munication network is solely handled by ns2, whereas two simulators are employed for
the power network model. The Power System Loadflow Software (PLSF) developed by
General Electric (GE) is utilized to simulate electromechanical properties of the power net-
work. Then again, electromagnetic scenarios are simulated via PSCAD/EMTDC. Either
PSLF is used in conjunction with ns2 or PSCAD/EMTDC is used in conjunction with ns2
meaning only one simulator is used for the power network simulation at a time. PSLF and
PSCAD/EMTDC have never been used combined with EPOCHS so far. The interaction
between the simulators is handled by a dedicated software mediator (see Chapter 4.1.1).

17

3 Related Work

EPOCHS has been used in research related to Special Protection Systems (SPS) (also called
Remedial Action Systems, RAS). These systems are designed to detect abnormal conditi-
ons and to apply corrective actions if necessary. The communication occurring in a SPS is
different from the communication in SCADA systems since a SPS requires a rapid respon-
se to the abnormal condition. A SCADA field device would communicate back to the MTU
first and wait for further instructions.
A similar approach to EPOCHS is ADEVS [43]. It uses the Discrete Event System Specifi-
cation (DEVS), a formalism for building and simulating hybrid system models [47]. DEVS
has been designed as a discrete event simulator, whereas the power network is a conti-
nuous time simulation. As a consequence, it does not include a dedicated PS. This is the
main drawback of DEVS since the user is required to provide custom code for the power
network components to be modeled. This code must then comply to the specification of
the DEVS framework to be used successfully in ADEVS. In addition, commercial and non-
commercial power network simulators do in general not comply to the DEVS specification.
ADEVS was used to conduct experiments on how latency in communication networks af-
fects power networks.
Another co-simulation framework is VPNET [35]. It uses OPNET to simulate the commu-
nication part and Virtual Test Bed (VTB) to simulate the electrical part. The data exchange
between the two simulations is handled via a coordinator, which has been developed spe-
cifically for VPNET. This co-simulation framework was designed for the study of power
electronics rather then extensive power systems like Smart Grids and by that it might be,
that VPNET will not scale properly when used to simulate a large scale power network. In
the study conducted with VPNET, a DC-DC boost converter, a small electronic component,
was simulated. The corresponding communication network consisted only of two nodes
and was not the main focus of the performed experiments.
A more recent framework is the Global Event-Driven Co-Simulation (GECO) [37]. GECO
introduces the novel approach of a global event queue, in which all events happening in
the simulation are stored. This approach provides high accuracy and scalability, a formal
proof of the method is given in [36]. Like EPOCHS, GECO uses ns2 and PLSF. The si-
mulators are combined via the global event queue written in the programming languages
C++ and Tcl, also used by ns2. GECO is used to study the energy transmission domain. In
particular, fault detection schemes using distance relays (also called impedance relays) are
the focus of research. This kind of relays are able to detect short circuit faults and further
provide an estimate on the position the faults occurred. It is possible to integrate other
communication and power simulators in GECO, however, this could be complicated since
it will require modifications to the simulators and the framework.
A simulation framework used more widely in research is the Command and Control Wind-
Tunnel (C2WT) [11] and the Networked Control System Wind Tunnel (NCSWT), which
itself is based on C2WT [45]. C2WT is designed as a general purpose co-simulation plat-
form enabling the integration of different simulators. Currently implemented communi-
cation simulators are ns2 and OMNeT++, the power network is modeled with Simulink.
Most of the research using C2WT/NCSWT is of military nature, especially in the field of
Unmanned Aerial Vehicles (UAV), but civilian research has been conducted as well (see
Section 3.2). C2WT requires several additional software packages to be functional.
Looking at the communication network simulators employed in the research presented in
this chapter, ns2 is the most widely applied. The reason for this is the early introduction

18

3.2 Security simulations for SCADA systems

of ns2 in 1997 and the constant development by the community. The power simulators
used in communication and electrical co-simulation are more differentiated. This is becau-
se of the different applications for the various co-simulation frameworks. However, the
simulators employed have their commercial nature in common. Freely available tools for
researchers of power networks are in general not available. An exception is GridLAB-D
(see Chapter 2.2.3).

3.2 Security simulations for SCADA systems

SCADASim is a network simulator developed for security studies in SCADA systems [44].
It implements most of the components of SCADA systems as described in Section 2.1. Ef-
fort was put into enabling SCADASim to run hardware-in-the-loop simulations. The hard-
ware components described in [44] were simulated with MATLAB/Simulink. In the eva-
luation of the framework, the authors showed the application of SCADASim in small scale
scenarios related to Smart Grids. The smart meter of a residence is exposed to a Denial-of-
Service (DoS) attack, which had negative effects on the availability of the smart meter. A
gateway component is not present in the simulation. The second demonstrated scenario
shows a spoofing attack on a wind mill. The wind mill was taken offline by falsified ser-
vice requests in the simulation. The main focus of SCADASim, however, is not on Smart
Grids but rather on general SCADA systems as they are found in public infrastructure, for
example transportation or water treatment. The framework consists mostly of the imple-
mentation of the communication network. The communication part was developed with
Version 3.1 of OMNeT++ and Version 1.99.5, or an earlier version, of OMNeT++’s INET
package. SCADASim can be executed with this software configuration on modern Linux
distributions. Since Version 2.0 of INET introduced major updates to the INET framework
[3], a port of SCADASim would be necessary for using it. For this reason, SCADASim itself
is not adopted into our framework. However, SCADASim provided sample implementa-
tions of several components, which has proven to be helpful during the initial steps of
development of the communication network models.
Security analysis on SCADA systems is also conducted with the C2WT framework [11]. A
model of a chemical plant with a SCADA network attached to it is simulated. The modeled
SCADA system is a simplified version of the Tennessee Eastman Control Challenge Pro-
blem, a realistic chemical process, that is used widely in process control studies. The che-
mical process takes place in an isothermal fixed volume reactor, which is monitored and
controlled by a SCADA system. The model for the chemical process was implemented
with Simulink, the communication was simulated with OMNeT++. The network model
consists of a series of connected routers. No other components are present in the network.
Sensors, actuators, and the MTU are represented by routers. In addition, several relay rou-
ters are found in the network map. Various of these routers are the target of Distributed
DoS (DDos) attacks. As with SCADASim, this study also focuses on the SCADA system
but does not take the broader aspects of the Smart Grid into account. In order to make OM-
NeT++ comply to the specifications of C2WT, extensive modifications to OMNeT++ must
be applied [7]. Furthermore, other software used by C2WT also needed to be extended.
The presented research focused on small scale scenarios. Typically, a single SCADA system
was used in the conducted experiments. The modeling of the communication has been the

19

3 Related Work

main priority, whereas the power portion of the system was simulated with dedicated mo-
dels in Simulink.

3.3 Scope of the Thesis

As compared to the related work discussed here, this thesis focuses on the development of
a co-simulation framework for security studies in Smart Grids. Other existing co-simulation
frameworks for Smart Grids have other research objectives, for example market research [10,
31]. So far, security related studies have only been conducted on isolated structures, whe-
re SCADA systems are employed. This thesis is going to encompass a broader context by
including several SCADA systems at once, as they are found in different locations of the
Smart Grid. The proposed simulator is a dedicated security simulator for the Smart Grid.
The simulated attack vectors will, therefore, take place in different domains of the Smart
Grid and will have effects on the other domains. The domains addressed by the propo-
sed attacks are the energy distribution and customer domains. As illustrated in Table 3.1, at
least one simulator used in a given co-simulation framework is of a commercial nature.
For the thesis, two open source simulators are be integrated together to a communication
and power co-simulation for the first time.

20

4 Concept

This chapter introduces our concept for the implementation of a co-simulation environ-
ment with the properties described in Chapter 2.2.1 and Chapter 3.3. Section 4.1 gives
an overview about different approaches for implementing co-simulations and categorizes
them according to their architecture. Their advantages and disadvantages are discussed
and a concept for implementation is developed. The attacks to be simulated with this co-
simulation are described in Section 4.2. Two attack vectors are presented, each of which
targeting a different domain of the Smart Grid. The approach of the attacker is explained
and the expected results of the attack are discussed.

4.1 Co-Simulation Framework

In this section, the different approaches for implementation of a co-simulation framework
are examined. They are categorized by their properties and compared to each other to-
wards their feasibility for implementing the proposed communication and power network
co-simulation. The approaches discussed here are all used successfully in literature. They
are described in detail in Chapter 3.

Co-Simulation
(Communication &

Power Network)

General

Custom

(Time-Stepped)

HLA

Other

VPNET

DEVS

EPOCHS

C2WT
NCSWT

Synchonous

Asynchronous

GECO

IRW

SCADASim

Rauchfuss

et al.

Figure 4.1: Categorization of existing co-simulation frameworks.

The derived categorization is summarized in Figure 4.1. The second layer from above
shows the two main approaches found for implementing co-simulation frameworks, ge-
neral approaches on the one hand and custom approaches on the other hand. General
approaches aim at developing a co-simulation independent from the simulators used for
the partial models. The simulators are considered to be interchangeable [11, 27, 47, 35].
In custom approaches, the simulators for the partial models are typically chosen first and
the co-simulation is then developed to integrate these environments [37, 10, 55]. The third

21

4 Concept

layer further divides these approaches by their most important property. For the general
approaches, this are the specifications their implementation is based on. The specification
is either an official standard or derived from individual research. The main distinguishing
property for the custom approaches is their synchronization method. The two main pro-
perties for each approach will be discussed further in the subsequent sections. The leaf
nodes, to be found in the bottom layer of Figure 4.1, list existing implementations for each
approach and property.

4.1.1 General Approaches

The most commonly employed technique for implementing general approach co-simu-
lations is covered in this section. Other techniques share the same basic ideas and are,
therefore, not covered in detail.
The High Level Architecture (HLA) is an effort for standardizing general approach imple-
mentations [2]. The HLA standard aims at promoting the interoperability of computer
simulations and their reusability in different contexts. The abstract co-simulation architec-
ture for conducting simulations within the HLA framework is depicted in Figure 4.2. In
the HLA topology, the partial models are referred to as federates. They are connected via a
dedicated software mediator, the Run-Time Infrastructure (RTI). Together, federates and RTI
comprise the simulation, the so-called federation. Inside the federation, the RTI is the central
and most crucial component. It is responsible for managing the communication between
the federates via a publish/subscribe mechanism. The federates are not strictly aware of
the RTI. By that, each individual federate would assume, that communication with the
other federates is possible directly. Moreover, the RTI keeps the internal clocks of each fe-
derate synchronized with the global simulation time. Therefore, the RTI implements the
two most important features for successfully conducting any co-simulation.

Federation

Run-Time Infrastructure

Federate 1 Federate 2 Federate n. . .
Publish/Subscribe
Communication

Figure 4.2: HLA federation.

22

4.1 Co-Simulation Framework

The High Level Architecture itself is a specification rather than a software package and
so an implementation of HLA is needed in order to use the standard. If a custom imple-
mentation of a RTI is not possible, choosing an already existing RTI is an important de-
sign consideration. Several commercial-of-the-shelf and open-source RTIs exist. Examples
for commercial RTIs are Chronos RTI, HLA Direct, SimWare RTI, Openskies RTI and Mit-
subishi ERTI. Open source RTIs are, among others, CERTI, GERTICO, Portico, Open HLA
and OpenRTI. Especially Portico has found wide usage in research. Implementations of the
HLA standard, that are using the Java-based Portico, are EPOCHS, C2WT and NCSWT (see
Chapter 3.1).
General approaches have the advantage of interchangeable partial models. This property
makes them easier to modify and extend during and after implementation. Newer partial
models developed with updated or different simulators can be implemented more simp-
ly. However, specifications for general approach co-simulations need to provide a generic
framework to encompass all possible types of simulators and software [26]. This generates
overhead for the implementation and affects the runtime. Furthermore, it could require
the modification of the simulators before they are integrated into the co-simulation. These
modifications might be necessary for the simulators to comply to the specifications of the
generic HLA framework. Since HLA is quite extensive, implementations result in softwa-
re packages with many classes and lines of code, which results in a steep learning curve
for the usage of those packages. An example for such a complex implementation of HLA
is C2WT. Other general frameworks, like DEVS and VTB (see Section 3.1), which are not
using the HLA specification but rather own specifications, suffer from the same draw-
backs.

4.1.2 Custom Approaches

Custom approaches follow the same kind of algorithm [10, 41]. They exchange information
at specific points in time during the simulation for sending messages between the simu-
lators and synchronizing the internal clocks. Since the synchronization happens at certain
steps in time, custom approaches are also referred to as time-stepped approaches.
Figure 4.3 illustrates the sequential flow during the execution of any time-stepped simu-
lation. Before actually executing the co-simulation, the initial parameters for the partial
models need to be set. These step contains mostly initializations but also loading time. Af-
ter the initial parameters are set and the simulators have loaded the partial models, the
simulations are started within each simualtor and the first interval is entered in the co-
simulation. Now, both simulators simulate their respective partial models using the provi-
ded parameters until the pre-defined internal time is reached. It is checked, if the reached
time is equal to the stop time for the entire co-simulation. If so, the co-simulation finis-
hes. Otherwise, the simulation of the interval continues. If some events occurred during
the time step, the parameters for one or all partial models are updated accordingly. Then,
the simulation continues with the next interval. Note, that all co-simulation approaches
discussed so far are inherently based on time steps. This is also true for the general ap-
proaches, since the RTI, or the corresponding equivalents in other specifications, forward
time internally with time steps as well [26].

23

4 Concept

set initial

parameters

start simulators

Begin

simulate next

interval

update

parameters

Finish

[end time reached]

[else]

[event(s) occured]

[else]

Figure 4.3: Time-stepped simulation run.

24

4.1 Co-Simulation Framework

The time-stepped methods can now be further divided into the following two categories,
synchronous and asynchronous methods. In [41], the terminology symmetric and asymmetric
is used to describe, if one simulator is controlled by another. In the course of this work, the
focus is put on message exchange for which the terms defined here are more fitting. The
different terminologies are not to be confused with each other.

Synchronous Co-Simulation

In a synchronous co-simulation, both simulation environments execute their respective
partial simulation models independent from one another. The message exchange, and also
the clock synchronization, is conducted at specific points in time. The interval of the points
does not necessarily need to be predefined but can change during the simulation. Howe-
ver, the next synchronization point must be known. This means, that the simulation can, in
theory, be executed in parallel, as already implied in Figure 4.3. In principle, messages can
be passed at any point in time, however, this generates more synchronization effort and
is more difficult to handle. SCADASim in an example for a synchronous co-simulations
[44]. The simulations that are executed within the framework are intended to be run in
real-time. For this purpose, the execution takes place in parallel. Therefore, SCADASim is
classified as a synchronous method. Another example would be the Integrated Retail and
Wholesale (IRW) project [10] (see Chapter 7.2).

Asynchronous Co-Simulation

Asynchronous methods are executed in a stop-and-go like scenario [41]. Figure 4.4 illustra-
tes this scenario for a communication and power network co-simulation. First, the commu-
nication network is simulated until a certain synchronization event occurs. Those events,
for example, could be messages produced by the simulation. The CS is stopped and the
PS is started. Note, that the PS in this scenario is “one step behind” the CS, meaning the
simulation of the power network needs to “catch up” to the communication network, i.e.,
reach the same internal time as the CS. For this reason, the amount of time passed since the
last event and the current stop is simulated with the PS. This is where the synchronization
of the internal clocks happens. After the PS has finished, and if the end of the simulation
is not reached, the simulation parameters are updated according to the event that caused
the CS to stop. The implications this event has on the PS will take effect in the following
simulation run of the PS. According to [41], this is a asymmetric co-simulation, because the
PS is controlled by the CS in this scenario. Another co-simulation framework is GECO [37].
In GECO, the simulation is also controlled from the CS. This shows the continuing trend
of the CS being in control of the entire co-simulation. It is also possible for the PS to be in
control of the simulation and to reverse the order of execution, i.e., start with the PS and
have the CS follow. This is depended of the modeled system and the purpose for which
the system is modeled. The approaches in literature leave the CS in control. This is due to
the fact, that they study the implications something has on the power network and not the
implications the power network has on something else.

25

4 Concept

Begin

simulate

communication

stop simulation

simulate power

update simulation

parameters

Finish

[else]

[end time reached]

[else]

[internal clocks sync'd]

[else]

[event occured]

Figure 4.4: Asynchronous execution of a time-stepped simulation run.

26

4.1 Co-Simulation Framework

4.1.3 Discussion

Each time-stepped co-simulation must find a trade off between performance and the ac-
curacy of the simulation. Long intervals between synchronization points for synchronous
co-simulations means reduced synchronization overhead. Therefore, the co-simulation is
executed more fluently. However, a proper response to events in time gets more difficult
the longer the simulation runs uninterrupted, rendering the event “lost”. GECO’s global
event queue was implemented to counteract this behavior [37]. Is the interval on the other
hand to narrow, the accuracy of the co-simulation is increased but the overall performan-
ce suffers from it. For asynchronous co-simulations, the performance might suffer as well
if the co-simulation is stopped on every event. Choosing important messages and only
reacting to them is key for making asynchronous co-simulations more accurate and over-
all better performing than synchronous co-simulations. In addition, an asynchronous co-
simulation is more easier to implement since parallelism is disregarded.
As already indicated in Chapter 2.2.3, GridLAB-D is the best choice for modeling the
power network within the co-simulation. For the communication model, ns2 and OM-
NeT++ are the best candidates (see Chapter 2.2.2). In comparison, OMNeT++ has more
advantages than ns2 [44, 54, 15]. Those advantages are summarized in the following:

• Modular specification of modeled objects is possible.

• Hierarchical modeling is supported.

• OMNeT++ includes its own IDE, which is based on Eclipse.

• It is more suited for the simulation of larger networks.

• More efficient use of resources and, therefore, faster simulation runs.

• Clear distinction between model, simulation and experiment.

• Extensive up-to-date documentation, that is included in the distribution.

The main advantage of ns2 over OMNeT++ is, that ns2 is a dedicated network simulator
containing a rich library of protocols. However, modeling rarely used protocols is not in
the scope of this work since it focuses on TCP/IP networks, which are included in OM-
NeT++. For this reasons, OMNeT++ our the choice for the CS. OMNeT++ is a discrete
event simulator, whereas GridLAB-D is a continuous time simulator, making the whole
communication/power-co-simulation a hybrid system model [47].
Several simulators have been integrated in HLA already [11, 45, 37] but so far GridLAB-D
has not been. Integrating a new simulator into HLA can be a time consuming task. Also, fa-
miliarizing oneself with the HLA framework and one of its implementation holds a steep
learning curve. Using time-stepped co-simulation approaches is in general more intuiti-
ve and provides more freedom during development. For this reasons, the asynchronous,
time-stepped co-simulation model, as depicted in Figure 4.4, is chosen as conceptional ap-
proach for implementation of the Smart Grid security simulation framework.

27

4 Concept

4.2 Simulated Attacks

The structure and the components for future Smart Grids, as described in Chapter 2.1, are
by no means fixed or final. Instead, they will likely change. Also, new attack vectors will
arise in the future and existing ones are bound to change. For those reasons, the archi-
tecture for the co-simulation proposed in Section 4.1 needs to be expandable and a wide
variety of different attacks should be possible for simulation. This goal is achieved by se-
lecting modular, widely used and actively developed open-source simulators.
Due to the complexity of the simulated object, i.e., the Smart Grid, it is not feasible to
list all the potential attack scenarios at this point. Many of them are discussed in litera-
ture [17, 13, 18]. In order to provide a proof of concept, two sample attack scenarios are
selected and integrated in the co-simulation framework. Both scenarios encompass the
domains consumer and energy distribution but the domain targeted by the attacker is diffe-
rent for each scenario. The results, however, will effect both domains.
The first attack vector is presented in Section 4.2.1. Its main purpose is to provide an acces-
sible demonstration of the security framework. It is also used as a testing scenario during
the initial steps of implementation. In the scenario, the attacker targets the energy distributi-
on domain and disrupts the security of supply by successfully performing the attack. This
is achieved by taking components of the distribution network offline. The distribution net-
work modeled for this scenario is simple and does not entail many different components.
The second scenario, introduced in Section 4.2.2, shows the capability of the framework to
conduct large scale simulations. It encompasses a much larger distribution network then
the first attack. The distribution network is based on a model derived from real world dis-
tribution infrastructure. The targets of this second attack are the residences of the customer
domain supplied by the power network. The scenario examines the effects changing de-
mand from a multitude of customers has on the stability of the distribution network and
the security of supply.
Power generation from renewable energy sources, for example by wind mills or solar col-
lectors, is not included into the proposed scenarios. The reasons for this decision are stated
more explicitly in Section 5.3. In short, this is due to the experimental implementation of
the respective modules in GridLAB-D. Leaving out components like solar collectors means
also, that no prosumers are present in the attack scenarios. The customers are represented
solely by regular consumers, each of which with its own smart meter and gateway. Howe-
ver, fitting models for prosumers and wind parks are implemented within the framework
and could be used in other scenarios (see Section 5.2). It is assumed, that the attacker in
each scenario has the means to infiltrate the communication network since security vulne-
rabilities for the Internet protocol stack have well been researched and are not the focus
of this thesis [16]. The immediate aim for the presented scenarios is to create a sense of
awareness among stakeholders.

28

4.2 Simulated Attacks

4.2.1 Shutdown Scenario

This section describes the attack, that is executed on the domain distribution network. For
further reference, the scenario described here is referred to as the Shutdown (SH) scenario.
Previously closed off control networks, which are, for example, part of the energy sup-
ply, are connected to publicly accessible networks, e.g., the Internet, in an increasing num-
ber [17]. Using already existing communication platforms and technologies for interconnec-
tion of the networks is economically reasonable. Moreover, efficient interconnection of the
systems involved is easier to implement when the same family of protocols is employed.
The family used in those scenarios is the popular and widespread TCP/IP protocol suite.
This introduces those networks to the well-known security vulnerabilities of TCP/IP pro-
tocols [16].
Parts of the public infrastructure, for example power networks, are a primary target for
cyber-terrorists, who are trying to disrupt the energy supply via forced blackouts. This is
also true for hostile nations, which might launch computer-based attacks as a preliminary
step of a conventional assault [33]. In order to reduce costs, components in power networks
are accessible via remote maintenance interfaces. Therefore, physical presence of operators
is not required for routine maintenance tasks. This results in an overall increase in efficien-
cy and is a method of saving costs as well. This fact could, however, be the entry point for
an attacker as well. The attacker could use falsified packets to request service operations,
for example an emergency shutdown of the component, which would be transmitted in
case of technical difficulties.
Figure 4.5 shows the schematic diagram of the Shutdown Scenario. The components of the
electrical grid, substation and transformer, are located in the domain energy distribution on
the top of the figure. In this domain, the control station is located as well. The control stati-
on is home to the MTU, an important component inside the Smart Grid. The attacker sends
a manipulated emergency shutdown request targeting one of the electrical components in
the grid to the MTU. It is assumed, that the attacker has the means to forge his authentica-
tion sufficiently so no flags are raised. The request is then distributed from the MTU to the
respective SCADA component at the receiving facility. This component will then in term
perform the shutdown. As a result, the connected houses in the customer domain (on the
bottom of Figure 4.5) suffer from a blackout since the energy supply is interrupted.
This scenario demonstrates the need of increased security in all SCADA networks connect-
ed to the Internet or other public networks. Only one vulnerable component endangers the
stability of the entire grid. The effects are in the best case local but might easily have broa-
der implications.
The extensive effects even one failing component has on the power supply have been sho-
wed by an accident on November 15, 2012 in Munich [50]. The outage was caused by a
substation going offline after an accidental explosion and affected consumers as well as
the public infrastructure. As a consequence of the outage, blackouts occurred in the parts
of the urban area. Furthermore, the public transportation was affected, as four subway li-
nes went out of service. The effects of this incident were noticeable as far as 50 kilometers
away. The results would be similar when the component has been shut down by a request
since it only is required for the substation to go offline without warning.

29

4 Concept

Domain Energy Distribution

Domain Costumer

Control
Station
(MTU)

Attacker

0

Substation

Transformer

House 1

0
Communicaton

Component

Electrical
Component

Communicaton
Channel

Electrical
Connection

Manipulated
Package

Broken
Connection

House 2

. . .

Figure 4.5: Conceptual view of the Shutdown attack.

30

4.2 Simulated Attacks

4.2.2 Price Update Scenario

In this section, the attack vector executed on the domain costumer is presented. The scena-
rio described here is referred to as the Price Update (PU) scenario.
Smart meter and gateways are deployed as mass products and installed at customers’ pre-
mises [17]. These smart meter are connected to the grid via gateways and communicate
with other components of the grid. It is assumed here, that the communication between
smart meter and gateway occurs unfiltered. This makes them a prime target for large sca-
le attacks. Naturally, the customer himself is a potential attacker. However, manipulation
of one smart meter has no broader impact on the power network. Therefore, this parti-
cular scenario is disregarded. Instead, the focus is on those attack vectors targeting many
or all smart meter in a local area. Smart meter offer the possibility for customers to link
up their energy demand to the current price for electrical energy in order to achieve cost
savings [18]. This is reasonable in a number of scenarios. For example, when the price
for energy is currently low, a device with high energy consumption is switched on. The
price update notification is sent to the gateway via public communication channels. From
the gateway, the notification is then further transmitted to the smart meter. The gateway
component is necessary for translating between the IP and SCADA protocol families. By
transmitting the price update notifications via public communication infrastructure, the
packets containing the price information become vulnerable for manipulation, for exam-
ple, through a man-in-the-middle (MITM) attack. Also, the packets could be generated by
an attacker and sent to the meter eliminating the need for an initially established connecti-
on between customer, Metering Point Operator (MPO), and Meter Service Provider (MSP).
From MPO and MSP, the transmitted data could also be sent to the Distribution System
Operator (DSO). This is the case examined closer in the PU scenario.
Figure 4.6 shows the conceptual sequence of the attack. The attacker, which could be the
same as described in Section 4.2.1, sends manipulated price update notifications to the
customers, who in turn change their energy demand, for example, by attaching different
household appliances to the power network. It is expected, that these changes in demand
will affect the local distribution network and will lead to oscillations within the energy
supply. This makes the energy network unstable, i.e., the frequency required for proper
operation drops below 60 Hertz (Hz) [53]. Affected are all households in the local part of
the grid targeted by the attack. In the PU scenario, the whole simulated grid will be the tar-
get. Blackouts and brownouts, the initial stage of a blackout, are the result. Brownouts, for
example, cause lights to dim or appliances to shut down. Apart from this nuisance, brow-
nouts also affect electrical motors and could damage them severely. Overall, this attack
vector shows, that also the customer domain is a target for attacks if the communication
between the different actors of the Smart Grid is not secured sufficiently.

31

4 Concept

Domain Energy Distribution

Domain Costumer

Gateway Smart Meter

Control
Station
(MTU)

Attacker

0

Substation

Transformer

0
Communicaton

Component

Electrical
Component

Communicaton
Channel

Electrical
Connection

Manipulated
Package

Change in
Demand

Appliance(s)

House

Figure 4.6: Conceptual view of the Price Update attack.

32

5 Implementation

This chapter describes the development and implementation of the Communication &
Power Network Co-Simulation (CoPS) based on the concept described in Chapter 4. An
overview about the architecture of CoPS is given in Section 5.1. The individual modeling
processes of the communication and power network are discussed in Section 5.2 and Sec-
tion 5.3 respectively. The development of a distributed .NET application for integration of
the models is presented in detail in Section 5.4.

5.1 Co-Simulation Architecture Overview

This section introduces the overall structure of CoPS and its main components. Details of
the implementation are spared intentionally and will be discussed in the following secti-
ons. CoPS consists of the components shown in Figure 5.1. The naming of the components
reflects the real namespaces and class names used for implementation. The package on top
labeled CoPS.Models.Power shows the relevant components of GridLAB-D used inside the
simulation. The power network model is executed via the gridlabd.exe command line inter-
face and generates an output in the form of comma-separated values (CSV). On the bottom
of Figure 5.1, the CoPS.Models.Comm package contains classes developed in OMNeT++. Ex-
ternal messages are received via the NotificationReceiver class and passed through
to OMNeT++’s scheduler: the CoScheduler, which was specifically developed for CoPS.
It propagates the messages through the network model until the results of the simulation
are available. They are then communicated back via the NotificationSender class. In
between the two simulator packages, the .NET classes, which together are in control of
the simulation, are depicted. A graphical user interface (GUI) is provided in the CoPS.GUI
namespace. The GUI offers an interface for users to conduct simulations. Here, the user se-
lects the simulation for execution and monitors the progress of the simulation. Moreover,
a graphical representation of the simulated network is shown. Helper classes are found
inside the CoPS.Libs.Messages library. The commands of the user are sent to OMNeT++ via
a dedicated server application (CoPS.GUI.Server), which is designed to run in a distribu-
ted, networked environment. For this reason, the communication happens via an interface
specified in the CoPS.WCF.Contracts shared library. This adds a Service-Oriented Architec-
ture (SOA) to the framework. Other packages with helper classes are the general purpose
CoPS.Lib library and the GridLAB-D specific CoPS.Lib.Gridlabd library. The first contains
the ConsoleApp class for executing command line tools, for example gridlabd.exe, and
the CSVParser class for reading the simulation results. The other helper library contains
a parser for the modeling language of GridLAB-D (GLMParser), which is used to read
the model’s structure in the beginning. During the course of the simulation, the model is
updated with the GLMGenerator and changes are written to the Power Network Model file.

33

5 Implementation

OMNeT++

.NET

GridLAB-D

CoPS.Lib.Gridlabd CoPS.Lib

CoPS.Models.Power

CoPS.GUI CoPS.GUI.Server

CSVParser ConsoleAppGLMGenerator GLMParser

CoPS.Lib.Messages

Power Network

Model
gridlabd.exeCSV Data

«interface»

CoPS.WCF.Contracts

CoPS.Models.Comm

NotificationReceiver CoScheduler NotificationSender

Figure 5.1: Components and packages of the communication and power network co-
simulation.

34

5.2 Communication Network Model

5.2 Communication Network Model

Network components in OMNeT++ are described with the Network Description Langua-
ge (see Chapter 2.2.2). With modules and channels to connect modules, two types of compo-
nent exist [52]. Modules are further divided in simple modules and compound modules.
Simple modules implement the behavior of certain components and are, therefore, respon-
sible for all activity occurring in a model. Their behavior is defined by the user in C++
source code files. Compound modules are containers for simple modules and may contain
any number of simple modules. The network model is comprised of the modules and their
connections. In order to develop communication networks as they can be found in Smart
Grids, new compound modules for SCADA components are implemented. The followi-
ng components are taken into account [44, 28]: Remote Terminal Unit (RTU), Program-
mable Logic Control (PLC), Master Terminal Unit (MTU), and Human-Machine Interface
(HMI) (see Chapter 2.1). These SCADA components are derived from INET’s standard
components, meaning they are treated by the simulation kernel as if they were INET’s
StandardHost component. The model includes support for the OSI stack and the pro-
tocols TCP/IP as well as UDP and ICMP. Smart meters are represented by the RTU. RTU
and PLC more and more take over the same tasks and are, therefore, modeled identically
but are present as individual components [5]. Moreover, the components implement the
INET application interface allowing dynamic binding of the C++ programs describing the
behavior of the modules [4]. These applications communicate with each other via simula-
ted network packets and make decisions based on the packets they receive. Furthermore,
they are responsible for the communication to the outside of the model (see Section 5.4).
In addition to the components mentioned above, a gateway component is implemented
into the framework. The gateway can be located in the customer domain, where it is used
to relay communication to the smart meter [17]. The gateway can also be employed in the
energy distribution domain, where it can be found in the SCADA networks of, for example,
wind parks. The gateway is a compound module, that consists of several simple modu-
les. Figure 5.2 shows the gateway and its simple modules. The gateway is also derived
from the StandardHost and so INET’s implementation of the OSI stack is clearly visible
inside the TCP/IP connectivity group. The Data Link Layer is represented by the simple
module labeled eth[0] on the bottom. Packets received at eth[0] are first passed to the Net-
work Layer protocol and then to the Transport Layer protocol, where TCP/IP is used. The
Application Layer implements the behavior of the gateway via user-defined C++ code. At
this point, the C++ applications describing the component’s behavior are integrated into
the model. In contrast to the other SCADA components, the gateway implements more
functionality. It separates the IP net (box TCP/IP connectivity) from the SCADA net (box
SCADA connectivity). Communication between those two components takes place inter-
nally via a publish/subscribe mechanism, as indicated by the doted line. This is the most
efficient way to handle communication inside the model. To avoid congestions, the mes-
sages passed from the IP net are put into a queue and are subsequently sent to another
compound module, in this case the smart meter, which is connected to the Queue but is
not visible in the figure. The implementation of the Queue component is adopted from the
PFSim project [20]. Other INET components visible in the Configuration box on the left side
are NotificationBoard, RoutingTable and InterfaceTable. These components
are responsible for proper packet routing inside the simulation. The gateway component

35

5 Implementation

has not been included in previous SCADA security frameworks (see Chapter 3) making
simulations with CoPS more sophisticated and detailed.

Figure 5.2: Gateway component of CoPS during runtime of a Price Update attack.

The compound modules are grouped together in subnets representing organizational units
of the Smart Grid. The basic structure is adopted from the large IPv4 Network demo inclu-
ded in INET. Figure 5.3 shows the hierarchical relation between the different subnets. The
leaf nodes in the bottom layer are the subnets, which are used inside the simulation. Each
individual entity is represented by a subnet, e.g., if there are three consumers in the simula-
tion, three LanConsumer must be present in the communication network model. The other
subnets are abstract base types from which the leaf nodes are derived. For representing
components of the distribution network, subnetworks for wind parks (LanWindpark) and
substations (LanSubstation) exist. For the consumer domain (see Chapter 2.1), regular con-
sumers (LanConsumer) and prosumers (LanProsumer) using solar collectors are included in
CoPS. The control station (ControlStation), where the MTU is located, is the central compo-
nent of the network responsible for controlling the field devices, PLC and RTU, which are
present in the other four subnets. Communication network models built with CoPS use for
the most part these components.
Models are always an approximation of the modeled entity since real world objects are
inherently complex and require assumptions to reduce their complexity in order to derive
a feasible model, that can be used in computer simulations. The assumptions for the dif-
ferent SCADA and network components, that are made during modeling, are discussed
at this point. The SCADA component models are based on their descriptions provided
in Chapter 2.1. The communication in the modeled network uses TCP/IP. The modeled
components are capable of communication via UDP and ICMP as well, however, this is

36

5.2 Communication Network Model

not used in the modeled network. An exception is the link between gateway and smart
meter, which is not handled by the INET package but rather by the simple packet based
communication of OMNeT++ and a publish/subscribe mechanism. Specialized models
for PLC and RTU are present in the model library of CoPS but inside the simulations they
are treated as identical components. At any time, there is only one MTU present in the en-
tire network. This emphasizes the single point of failure characteristic of these component
[18].
Network models are calculated based on statistical models and are not fixed. Therefore, it
is necessary to run a large amount of experiments before conclusions can be drawn [26].
It is possible to use a deterministic algorithm for the generation of random numbers in
OMNeT++, the Mersenne Twister Random Number Generator (MT-RNG) [52]. Using a
deterministic RNG ensures, that multiply simulations of the same model produce identi-
cal results, i.e., making the experiments reproducible. Furthermore, no sample space needs
to be generated and conclusions can be drawn from one simulation run. The RNG must
use the same seed for calculation of the random numbers to ensure this properties. This is
achieved by setting the seed-0-mt property in the configuration file to an arbitrary 32-bit
value.

LanBase

LanPowerBase LanHome

ControlStationLanSubstation LanWindpark LanConsumer Lan Prosumer

Figure 5.3: Subnetworks implemented in CoPS.

37

5 Implementation

5.3 Power Network Model

The information provided in this section, if not noted otherwise, is taken from the official
GridLAB-D wiki and the technical support forum [29]. Names written in typescript
indicate classes or components of GridLAB-D.

Nodes

Entry Point
Meter
Node
Triplex Meter
House

Regulator
Parent/Child
Overhead Line
Underground Line
Transformer

Legend
Links

1000 1200 1100
1101

1102

1103

1400

3000

Figure 5.4: Visualization of a simple GridLAB-D distribution feeder.

GridLAB-D offers the possibility to model distribution networks, which are also referred
to as feeder. The relevant components are specified in the Powerflow module. All com-
ponents are derived from the two base types Node and Link. Node objects are connected
via Link objects. Together they compose the feeder model. Most of the components in a
feeder have configuration objects, which are here not further discussed for simplicity. Fee-
der typically vary significantly in their structure [48, 49]. The feeder modeled by GridLAB-
D are identical in their basic composition, which makes them more accessible. Figure 5.4
depicts the basic composition for a GridLAB-D feeder. The feeder shown in this figure is
not atomic per se, however, it shows a baseline model of a distribution network using most
of GridLAB-D’s Powerflow components. The visualization of the feeder is done with the
Ruby script Glm2Dot [14]. The numbers attached to each Node follow the naming con-
ventions listed in Appendix A. The magenta node (numbered 1000) on the left represents
the interface to the energy transmission domain, which is seen as the local substation of the
feeder. The lavender circle (1200) next to it is a Meter, connected via a Regulator link
(red line). The small black dots represent regular Node objects (1100-1103). 1100 is the pa-
rent of 1200 as indicated by the thin black line. The nodes are then connected by a series of
links: An OvergroundLine (blue), an UndergroundLine (brown) and a Transformer
(green), which are all derived from the Link base object in GridLAB-D. The orange circle
(1400) is the TriplexMeter, i.e., the smart meter, which connects a House (3000) from
the Residential module to the feeder.

38

5.3 Power Network Model

Within the GridLAB-D distribution, a set of distribution test feeders (DTF) is included. A
DTF is a generalized model of a distribution feeder, which is used for benchmarking and
to provide comparable experiments [32]. The feeders included in GridLAB-D are chosen
by statistical analyses based on the data of 575 US feeder models [48]. They are charac-
terized by climate region and voltage. A total of 24 typical feeders were compiled from
the base data. Using one of these DTFs has the advantage, that an already tested model is
used, which results in less errors. However, the feeder reflect the conditions present in the
continental USA and not in Germany. Also, most of these feeders are quite complex, mea-
ning they consist of many components and their structure is not apparent by reviewing
the source code file. However, using Glm2Dot the structure is made visible easily. Parts of
the feeder can be taken offline with Switch links using the Reliability module, which
reduces the overall complexity since only a part of the feeder is used. This benefits the mo-
deling of smaller scenarios. House nodes are integrated in the feeder via connecting them
to Meter objects, that are already present in any DTF.
Similar to House nodes, wind mills and solar collectors can be integrated in a DTF. An offi-
cial documentation is not provided because of the experimental status of the Generators
module, however, examples demonstrating their usage can be found in the GridLAB-D
repository. Wind mills (windturb_dg) integrate like Houses over a Meter into the fee-
der, whereas solar collectors (solar) require an AC/DC converter (inverter) between
House and solar collector. Two different wind mills are modeled in GridLAB-D, a 1.65 MW
Vestas V82 turbine and a 2.5 MW GE turbine [21]. For testing purposes, the Generators
library of GridLAB-D 2.2 and the nightly build from March 15, 2013 are used to integra-
te Generators objects into a simple DTF. The modules are functional mostly, however,
crashes occur randomly during simulation without any error report. For this reason, the
objects of the Generators library are not included in the demonstration models.
As mentioned in Chapter 2.2.3, the Residential module contains models for different
household appliances. In GridLAB-D 2.2, the only supported model for such an appliance
is the WaterHeater. Other models, e.g., DishWashers, are included, however, during
development it was found, that these models might not be functional in any scenario.
Therefore, only the WaterHeater appliance is used. Multiple household appliances are
represented by multiple instances of WaterHeater objects attached to one residence.
The results of the simulation are recorded by the Tape module, either via a Recorder or a
MultiRecorder. This is done for individual objects and properties, for example the vol-
tage at a certain Meter could be reported. The object’s name and the property are passed
to the (Multi)Recorder via a string attribute. The size of the string is limited internally
by a 1024 byte buffer. All recorders inside a simulation use the same buffer, i.e., there is
only one buffer for each simulation. This has implications on large scale simulations since
not all desired values can be extracted from the simulation. This is due to the fact that only
a limited number of string attributes can be stored in a string of 1024 characters length.
For this reason, the different residences in a feeder are grouped together to streets for the
purposes of demonstration. One residence in this street is randomly selected as the repre-
sentative for the entire street, because the voltage levels at the residences of a street are
similar.

39

5 Implementation

For all GridLAB-D models developed within CoPS, the assumptions and conventions ma-
de in the remainder must be used. They will be used by the .NET implementation for the
individual simulation.
The entry point for every DTF, i.e., the part of the feeder from the transmission network in-
terface to the beginning of DTF structure, is the same for all feeder models. The following
components are connected to each other in the order mentioned: Regulator (1000), node
(1100), meter (1200), node (1101), switch (1900), and node (1102). Furthermore, those com-
ponents must have the number in brackets assigned as internal ID. Note, that the switch
(1900) is optional. However, if it is needed inside the simulation it should be used at the
position indicated here. When the switch is located between the second and the third node
of a feeder, the whole power network can be taken online or offline easily.
The starting time of the internal clock is set to 00:00:00 on 2000-01-01. This is the earliest
time that can be specified in GridLAB-D and is set for convenience.
It is possible to split model definitions over different files. However, one file must contain
the entire structure of the network for proper parsing. Other non-structural objects, for
example configuration objects of schedules, can be stored in separate files. The model for
the power networks is split upon several files. GridLAB-D allows to include model files in
other models similar to the #include directive of C/C++. This facilitates the reusability
of different parts of the model in other scenarios. The main file used in CoPS is named mo-
del.glm, the extension GLM is short for GridLAB-D Model. In this file, the structure of the
network is described (see Chapter 5.2). The configuration objects are listed in a separate
file, model-config.glm. Separating structure and configuration provides better clarity when
updating the structure. The configuration file is the same for the two power network mo-
dels. Definitions and global variables are further provided in the model-header.glm file. For
the Price Update Scenario, an additional model file named model-schedules.glm is provided.
In this file, the schedule for the demand of the water heaters, used to model any house-
hold appliance, is defined. Schedules are used by GridLAB-D for computing values, that
change over the course of a specific time period, for example over the course of a day.

40

5.4 Integration

5.4 Integration

This section explains the development of the framework in control of the co-simulation.
The integration of the two simulation environments into this framework is covered in Sec-
tion 5.4.1. The implementation of the simulations is discussed in Section 5.4.2. The GUI is
shown in Section 5.4.3.

5.4.1 Communication

External applications can be integrated in OMNeT++ by using one of the following three
techniques [38, 44]. First, Source Code Integration, i.e., the modification of OMNeT++’s
source code, second, Shared Library Integration, where a library used by both, OMNeT++
and the external application, is developed or, third, by Socket Connections. Here, com-
monly used network protocols are employed for communication.
In order to use the first variant, knowledge of OMNeT++’s implementation is required.
The source code needs to be recompiled using the specified build environment. The ex-
ternal application must be integrated into this environment, which limits the flexibility
during development and design. Moreover, familiarizing oneself with OMNeT++’s imple-
mentation details holds a steep learning curve. The second variant is similar to the first one
but it does not require the use of the build environment. However, usage of OMNeT++’s
interfaces is mandatory, which has the same drawbacks. In the third variant, the least chan-
ges are required and it imposes the least restrictions on development. In addition, it is the
most flexible in regard to developing a Service-Oriented Architecture. For this reasons,
the integration of OMNeT++ and the .NET application is implemented via sockets. The
protocol of choice for handling the communication is HTTP, in particular HTTP’s POST
messages since they offer a flexible way for data exchange and communication [30, 34].
Other possible protocols are Remote Procedure Calls (RPC) [41] and the Simple Object Ac-
cess Protocol (SOAP) [40], which would, however, require a dedicated server.
The information required for communication between OMNeT++ and .NET is attached to
the HTTP message as XML coded payload. Listing 5.1 shows the payload of a HTTP POST
message used in the simulation of the Shutdown Scenario. The message type is defined at
Line 2 in the Type parameter of the Message tag. This way, OMNeT++ is able to deter-
mine which type of message it is receiving. In between the Components tag (in Lines 3 to
6) the items supposed to shut down are listed. In the example of Listing 5.1, these are the
objects named regulator_1000 in Line 4 and transformer_1501 in Line 5. An arbi-
trary list of components for receiving the emergency shutdown request is provided inside
the Components tag.

1 <?xml version="1.0" encoding="utf-8" ?>
2 <Message Type="Shutdown">
3 <Components>
4 <Component>regulator_1000</Component>
5 <Component>transformer_1501</Component>
6 </Components>
7 </Message>

Listing 5.1: Payload of a HTTP POST message for Shutdown Scenario.

41

5 Implementation

The payload for a message in the Price Update Scenario is depicted in Listing 5.2. Here,
the receiving components inside the communication network simulation are not explicitly
stated since it is assumed, that the price update notification will be send to all smart meters
inside the simulation. As with the Shutdown Scenario, the Message tag specifying the
Price Update Scenario is found at Line 2. Inside the Prices tag (in Lines 3 to 6), the old
and new price is specified in Lines 4 and 5 respectively. The new price is lower than the old
price, which might result in increasing demand from customers. If the old price is lower,
instead, the customer might not change or reduce his demand. Identical prices are ignored
and no change in demand will take place.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <Message Type="PriceUpdate">
3 <Prices>
4 <Old>13.13</Old>
5 <New>11.11</New>
6 </Prices>
7 </Message>

Listing 5.2: Payload of a HTTP POST message for Price Update Scenario.

In order to manage the communication of OMNeT++ with external applications, it is neces-
sary to implement an own scheduler taking care of this task [52]. The sending and receiving
of the packets from and to the external application is still done with sockets, which are pro-
grammed using the Windows Socket API (WSA or Winsock). The scheduler is necessary
for the propagation of the packets, i.e., translating the external packets to internal, simula-
ted packets and vice versa. The scheduler of CoPS is based on the cSocketRTScheduler,
which is included in a demo application of OMNeT++. That demo originally showed the
simulator’s capability for handling hardware-in-the-loop simulations (see Section 4.1.2).
So far, the selection of the protocol for communication has been covered. In the following,
the implementation of the protocol in .NET will be discussed. Several dedicated classes for
handling HTTP connections exist within the .NET framework. Especially .NET 4.5 adds se-
veral new classes and extended support for distributed web applications to the framework
[24]. They are found in the System.Net.Http namespace. This namespace contains, among
others, the classes HttpListener and HttpClient, which implement HTTP server and
client functionality respectively. The HttpClient is introduced in .NET 4.5. Improved
support for distributed, asynchronous web applications has been integrated in this versi-
on as well, namely with the await and async keywords. They handle most of the details
for sending and receiving asynchronous packets. The developer is not required to provide
code taking care of this tasks any longer. For this reasons, .NET 4.5 is used as platform
for development. The communication between server and client is based on the Windows
Communication Foundation (WCF). WCF replaces the Remoting namespace and builds a
Service-Oriented Architecture. Visual Studio 2012 and C# are used for implementation, be-
cause they offer the best support for the .NET framework. In particular, Visual Studio 2012
is mandatory for software development with .NET 4.5.

42

5.4 Integration

5.4.2 Simulations

This section describes the integration of the partial models towards a co-simulation. It de-
scribes how the two scenarios specified in Chapter 4.2 are implemented in .NET. The de-
scription provided here is in most parts not specific to these scenarios and could be used
for the later development of additional scenarios as well.
The implementation uses a behavioral design pattern called the Strategy Pattern [22]. The
composition of this pattern is shown in Figure 5.5. The main class is the Simulation-
Executor, which contains the selectSimulation and runSimulation methods. The
first is called by the SimulationSetter, which contains the information what simulati-
on should be executed. After the simulation is set, it is started and executed stepwise by
CoPS. This is achieved by calling the executeStep method of the abstract Simulation
class. This class is the base class for all simulation models. They can be changed dynamical-
ly during runtime without a restart of CoPS or one of its components. Another advantage
of the Strategy Pattern is, that new simulation models are easily integrated in the applica-
tion by subclassing from the Simulation base class.

CoPS.GUI

SimulationSetter

- IsPriceUpdate: boolean

- IsShutdown: boolean

+ updateSimulation() : void

SimulationExecutor

- CurrentSimulation: Simulation

+ runSimulation() : void

+ selectSimulation() : void

Simulation

+ executeStep() : void

PriceUpdate

+ executeStep() : void

Shutdown

+ executeStep() : void

calls runSimulation() calls selectSimulation()

Figure 5.5: Classes for implementation of the Strategy Pattern in CoPS.

43

5 Implementation

The different partial models for each simulation need to be developed first in the respective
environments of the CS and PS. Each entity modeled must have an expression in both
partial models. For example, a customer needs to be represented by a House object in
GridLAB-D and by an LanConsumer component in OMNeT++. The complete mapping
for the components modeled in OMNeT++ and the relevant objects entailed in GridLAB-D
is given in Table 5.1. The components of the communication network are found on the left
hand side and the corresponding component of the power network is found on the right
hand side.

OMNeT++ object GridLAB-D object
LanConsumer house
LanProsumer house, solar, inverter
LanSubstation regulator, transformer
LanWindpark windturb_dg

Tabelle 5.1: Associated components and objects of the communication and power network
models.

The algorithm for the execution of the stepwise simulation is in most parts identical for
the individual models and explained in the following. It is executed once for each step of
the asynchronous simulation (see Chapter 4.1). Figure 5.6 shows the asynchronous steps
first illustrated in Figure 4.4 with OMNeT++ as CS and GridLAB-D as PS. First, the CS
simulates the communication network and waits for an event to take place. If the event
occurs, the CS stops and passes the context to the PS. The PS is now required to synchronize
its clock with the clock of the CS. This means, it simulates the period of time that has
passed since the last event or since startup, if the event is the first event to occur. After
the PS finishes its simulation run, the context is passed back to the CS and the described
operations are repeated until the simulation finishes.

Event 1

OMNeT++
clock

GridLAB-D
clock

Event 2
1

2

3

4

5

6

7

8

9

Time Progression

Context Switch

Legend

Figure 5.6: Asynchronous execution of the co-simulation with CoPS.

44

5.4 Integration

In the following, the algorithm itself is described in more detail, taking into account speci-
fics for the implementation in CoPS:

First, the previous step of the simulation is finished.

1. Setting the stopping time in the power model for the previous step.
Since an event occurred inside the CS, the stopping time is now available. It is the
time at which the event occurred inside the CS.

2. Determining the name for the new power model file.
The model file is not just updated but rather a new file is generated for each step.
The reasoning behind this is to provide a better traceability of the changes occurring
inside the PS for later reference after CoPS finishes. The file name is chosen to include
the stopping time of the step.

3. Updating the model and writing it back to disk.
Updating happens inside the GLMParser class (see Figure 5.1), which contains the
parsed structure of the previous model. Writing is done via the GLMGenerator.

4. Simulation of the previous step.
Since all information is now available and the model file is properly updated, the
previous step of the simulation is executed via ConsoleApp.

From here on, the model file for the next simulation is prepared. This model will in turn
be used in the first part of this algorithm during the next simulation step.

5. Setting the start time for the power model.
The start time is the time the event causing the step occurred inside the CS plus one
second. This achieves a gapless seaming of the simulation steps since the amount
of time passing during that second would otherwise be computed two times. One
second is the smallest unit of time, that can be used in GridLAB-D.

6. Handle tasks specific to every simulation step.
For the SH scenario, switches are opened and closed in order to remove or add com-
ponents to the power network. In the PU scenario, the respective household applian-
ces are added to or removed from the feeder.

7. Write the generated file to the disk.
The almost finished file is written to the disk and loaded during the next simulation
step. The only information missing from this file is the stopping time, which is not
known yet.

Step seven of the algorithm implies, that the simulation would in theory run indefinitely
since the final stop time is not known when the last step finishes. For this reason, a finalize
button is integrated in the GUI, which terminates the simulation at the current time of the
CS and executes the last step of the simulation.

45

5 Implementation

The algorithm presented on the previous page is summarized in Figure 5.7. Before the si-
mulation can be advanced at all, the original model for the power network must be parsed
by GLMParser (numbered 0 in the figure). The algorithm is started by the CS. When a
relevant event occurs inside the simulation of the communication network, the event and
the time it occurred are send to CoPS (1). In CoPS, the time received from the CS is used
as the new stop time for the previous simulation run. In the example, the first relevant
event inside the CS has a time stamp of 00:05:00, i.e., five minutes after the start of the
simulation at 00:00:00. The time is updated within GLMParser and the file name for the
final power model file is determined (2). The stop time is included in the file name to di-
stinguish the different simulation steps more easily. The file is then written to disk with
the GLMGenerator (3). ConsoleApp uses the command line interface of GridLAB-D and
executes the simulation of the newly generated model file (4). The results are written in a
text file with the same filename but different file extension then the executed power net-
work model. The file is then parsed again by GLMParser in order to prepare it for the next
simulation step. The original start time is replaced by the stop time plus one second (5).
Also, tasks specific to any attack scenario are conducted (6). Then, the model file is written
to a temporary file (7). This file will be used in the next step of the simulation as replace-
ment for the previous model file. In the example provided, the previous model file was the
original model file (model.glm), since the example showed the advancement of the first
step in the simulation.

GLMGenerator

ConsoleApp

model.glm

model-00:05:00.glm model-00:05:00.glm

temporary.glm

t_start := t_stop + 1s

scenario
specific tasks

GLMParser

t_stop := ??

model-00:05:00.txt

0
t_stop := 00:05:001

2

3

4

5

6

7

Figure 5.7: Algorithm for advancing the simulation.

46

5.4 Integration

5.4.3 GUI

The GUI is developed to visualize the structure of the power network. This is for two rea-
sons. First, GridLAB-D does not provide a GUI and dynamic visualization with Glm2Dot
is not possible (see Section 5.3). Furthermore, the effects on the power network are obser-
ved in this thesis and a GUI to show the observed power network provides visual feed-
back to the user. The structure for the power network is visualized in the user control
PowerStructure, which is an essential part of the overall GUI.

Figure 5.8: Main GUI of CoPS during a Shutdown simulation.

The GUI during a running the SH scenario is shown in Figure 5.8. The controls on the
left hand side, inside the Simulation Control box, are for controlling the simulation. First,
the simulation is chosen via the radio buttons in the Select Scenario box. Then, the power
network model needs to be loaded, which happens with the controls in the Select Model
box. Simulation specific operations are conducted by selecting the respective tab of the tab

47

5 Implementation

control placed inside the Run Simulation box. Using this tab control makes the GUI easily
extensible when new simulations are added. On the bottom of box Simulation Control, the
button for finalizing the simulation is found. The Display Effects box contains the afore-
mentioned PowerStructure control, which is the only control inside the group box. The
third main box is labeled Log and is located on the bottom of the figure. Here, it is possible
for the user to view the messages generated by CoPS, clear the displayed messages or save
them to a text file.
The user is required to perform actions on the controls found inside the Simulation Control
box in a specified sequence to successfully execute a simulation. The ordering is internal-
ly enforced by CoPS via a state machine model. Figure 5.9 shows these states and their
transitions. The names of the states correspond to the labels of controls in Figure 5.8. The
state entered at first is Select Scenario. Only if the simulation for execution is specified, the
transition in the next state, Select Model, is possible. After the model is selected, the state
Perform Action(s) is entered. The user performs one or several actions in this state. When he
is finished, the state machine transits into the state Finish Simulation. From here, the user
is left with the choice of selecting a different simulation or to close the application. Clo-
sing the application leads to a transition into the final state. The states are defined in the
AppStates enumeration of CoPS, the progression inside the state machine takes place via
the setState method, which is called whenever a transition is supposed to occur.

Select Scenario Select Model Perform Action(s) Finish Simulation

Figure 5.9: Actions and states of CoPS’s main GUI.

The main part of the GUI is the PowerStructure control in the top right corner of Figure
5.8. It shows the structure of the SH scenario as described in Section 4.2.1. On top, the sub-
station is depicted by the typical voltage sign. Two transformers are attached to it (overlap-
ping circles), which have in term one respectively two residences (house icons) connected
to them. The color and dashing of the connection lines states the current voltage level bet-
ween the two components, the color and dash coding is given in the top right corner. In
this particular case, the residences house_3000 and house_3001, attached to trans-
former_1500, have sufficiently high voltage, whereas residence house_3002, attached
to transformer_1501, suffers from a blackout. This is caused by transformer_1501,
which was taken offline by a falsified emergency shutdown request.

48

5.4 Integration

The power structure during simulation of the PU scenario is depicted in Figure 5.10. Here,
only the PowerStructure user control is shown. The regulator (voltage sign) is visible
at the top again. Several streets are connected to the regulator. The streets group residences
together. As seen, the streets B and C suffer from critically low voltage, indicated by the
dashed line. This is due to falsified price update notifications causing the residences to
attach appliances to the power network.

Figure 5.10: Visualized power network structure for the Price Update Scenario.

The voltage level is determined by reading the results of each simulation step and by up-
dating the color coding in the GUI. GridLAB-D writes its output to files in the form of
comma-separated values (CSV). These values are read with the CSVParser class in the
CoPS.Lib namespace (see Section 5.1). In this namespace, the Statistics class is contai-
ned as well. GridLAB-D generates an amount of output values for each object recorded.
That amount is depended on the configuration and the runtime but is typically more than
25 output values. With the Statistics class, these values are averaged. The averaged
value will then be used to determine the color coding. In order to provide a more accu-
rate result, the Statistics class ignores the first five generated values since they are
unstable. This is because the solver methods of GridLAB-D require some time to converge
and so the initial generated values reflect not the conditions present in the simulation (see
Chapter 2.2.3). The number five is found empirically by comparing a multitude of genera-
ted output files for different scenarios. The convergence is depended on the time passed
within the simulation so a faster execution of the simulations does not provide a solution
for this.

49

6 Simulation & Results

This chapter presents the results of the conducted simulations. The experimental setup
for the performed attacks is described in Section 6.1. The individual simulations, their
implementation and the simulations’ results are discussed in Section 6.2 and Section 6.3
respectively.

6.1 Experimental Setup

CoPS is designed as an distributed application (see Sections 5.1 and 5.4.1), however, for
simplicity the simulation passes have been conducted on a single machine. The local net-
work on that machine has been setup with the parameters described in Appendix B.
OMNeT++ offers the possibility of compiling executables of a simulation model [52]. The-
refore, it is possible to execute these simulations stand alone and the IDE is not required to
perform tests. This is useful for distributed applications but does not provide advantages
in a single machine run. In addition, the IDE provides better support for debugging and
corrections are easier to apply. The model of the Internet (the InternetCloud module)
has been configured to drop no packages. The value for the delay of the packages traver-
sing through the Internet is distributed normally.
For demonstrating the effects of an attack, the voltage level at the smart meter installed at
the individual residences is recorded via the Tape module of GridLAB-D. Due to a lack of
proper support for German power networks in GridLAB-D, the simulations discussed in
the subsequent chapters employ U.S. power networks. For this reason, the required volta-
ge level for operating appliances is 120 V. This value is taken as the threshold to distinguish
between a sufficiently high and an insufficiently low voltage. Another interesting property
to study would be the frequency, which is measured in Hertz (Hz). It would allow to make
statements about the stability of the energy supply. Currently, it is not possible to obtain
frequency readings from GridLAB-D simulations.

51

6 Simulation & Results

6.2 Shutdown Scenario

In this section, the Shutdown (SH) scenario is examined (see Chapter 4.2.1). The implemen-
tation for the partial models is covered in different sections. The communication network
model is given in Section 6.2.1, the power network model in Section 6.2.2. The results of
the executed simulation are discussed in Section 6.2.3.

6.2.1 Communication Network Model

The network model for the SH scenario is shown in Figure 6.1. A single control station,
controlStation, is located on top and the subnetworks representing the SCADA net-
works are indicated by the gray clouds labeled “SCADA”. The first of these networks is for
the substation regulator_1000. The other networks are for controlling the two transfor-
mers, transformer_1500 and transformer_1501 respectively. The three consumers
are depicted by the house symbols, which are connected to local routers. Those reflect the
communication infrastructure operated by an Internet Service Provider (ISP). The local
routers are in term connected to the Internet (white cloud, center). The Internet is mo-
deled by the InternetCloud INET component, which is parameterizable via an XML
file. The links between the components connected to the internetCloud, in this case the
routers router_0, router_1, and router_2, are specified there. They are all connected
to each other via the Internet, the internetCloud has been configured as described in
Section 6.1.

Figure 6.1: Communication network model of the Shutdown Scenario.

52

6.2 Shutdown Scenario

6.2.2 Power Network Model

The modeling of the power network for the Shutdown Scenario is straight forward and
shown in Figure 6.2. The model again is visualized by Glm2Dot. It uses the same symbol
and color coding as Figure 5.4. Also, the basic structure for the initial portion of the feeder
is identical. GridLAB-D’s switch objects are represented by the opened, orange links. In the
figure, the switches are open but during simulation they are closed. Each object capable of
being shut down is taken offline by the corresponding switch. The naming conventions
listed in Appendix A also apply here. The modeled power network is separated in two
parts, each of which with its own transformer. To the transformer located on the left hand
side, a single residence is connected. The transformer on the right hand side has two re-
sidences connected to it. It would be possible to use individual transformer links for both
residences instead of one transformer link for the two them. Since the results for the two
cases would be identical, a single transformer was chosen. Furthermore, this reduces the
complexity of the feeder. The position of the switches located in each of the two parts could
be exchanged with either the underground line link or the transformer

Nodes

Entry Point
Meter
Node
Triplex Meter
House

Regulator
Parent/Child
Overhead Line
Underground Line
Transformer
Switch

Legend
Links

1000

1200

1100

1101

1102

1103

1104

1105

1400

3000

1401

3001

1106

1107

1108

1109

1402

3002

Figure 6.2: Power network model of the Shutdown Scenario.

53

6 Simulation & Results

6.2.3 Results

When looking at Figure 6.2, it becomes apparent, that different configurations for the Shut-
down Scenario are possible. These configurations are summarized in Table 6.1. The figure
depicts all the possible configurations and their properties. The first configuration is cal-
led the Initial configuration. Here, all components responsible for the power supply to the
residences are online and deliver a sufficient amount of energy. As a result, none of the
three houses is offline. The next configuration is Partial One, where the transformer with
the ID 1501 is taken offline by a falsified emergency shutdown request. Transformer 1500
and the regulator, i.e., the substation, are still online and provide two out of the three resi-
dences with energy. However, one of the residences, which is attached to Transformer 1501,
is offline. In the Partial Two configuration, Transformer 1500 is taken offline, whereas the
Transformer 1501 and the regulator remain online. Since two residences are attached to
this transformer, the total number of offline houses is two. In the last configuration, na-
med Total, the regulator is taken offline. As a result, none of the transformers is supplied
with power anymore. This means, that the three residences also receive no power and are
offline. The Total configuration is reached either by the regulator going offline as well as
a subset of the two transformers or by both transformers going offline at the same time.
Either way, the results are identical.

Configuration Regulator Transformer Transformer Houses
Name 1000 status 1500 status 1501 status offline
Initial online online online 0
Partial One online online offline 1
Partial Two online offline online 2
Total offline offline offline 3

Tabelle 6.1: Configurations for the Shutdown Scenario.

The initial voltage values for the individual residences are given in Table 6.2. The similarity
of the values is based simply on the flat structure of the simulated power network. When
a component of the electrical grid is going offline, the voltage measured at the meter of the
house connected to the component drops from its initial value to 0V. This was the expected
outcome.

House ID Initial Voltage
3000 124.668V
3001 124.615V
3002 124.669V

Tabelle 6.2: Initial voltages for residences in the Shutdown Scenario.

The Shutdown Scenario provides the first proof of concept for CoPS, the implementation
of the communication and power networks gives an easily accessible baseline model for
further scenarios. To prevent the results of the Shutdown Scenario, precautions for mes-

54

6.3 Price Update Scenario

sage integrity and authenticity must be met. This could be, for example, comparison of
received messages with a reference message.

6.3 Price Update Scenario

In this section, the Price Update (PU) scenario is examined (see Chapter 4.2.2). The im-
plementation for the partial models is covered in different sections. The communication
network model is given in Section 6.3.1, the power network model in Section 6.3.2 respec-
tively. The results of the simulated attack are discussed in Section 6.3.3.

6.3.1 Communication Network Model

For the PU scenario, the network structure shown in Figure 6.3 is conceived. The network
has the same basic core structure as the SH model. However, since the PU scenario is mo-
re complex than the SH scenario, the individual residences are grouped into streets and
substreets due to the limitations of GridLAB-D’s data buffer (see Section 5.3). The streets
are the organizational units depicted in the GUI (see Chapter 5.4.3). The SubStreet com-
ponent (symboled by a group of houses) is a compound module containing different resi-
dences grouped together. It has been added to provide a better overview during modeling.
All substreets suffixed with a certain identifier comprise the street, for example streetB1,
streetB2, and streetB3 are referred to as Street B.

Figure 6.3: Communication network model of the Price Update Scenario.

55

6 Simulation & Results

6.3.2 Power Network Model

For the Price Update Scenario, a more complex power model is required. For this reason,
an existing feeder model included is used. The feeder named R2-12.47-2, which is included
in the GridLAB-D distribution, is chosen because of its relative low count of nodes, which
is still large enough for a feasible presentation [48]. The feeder is operated with a voltage
of 12.47 kV. A total of 189 residences are attached to the feeder.
Figure 6.4 shows the structure of the R2-12.47-2 feeder. The symbols used are the same as
in Figures 5.4 and 6.2. The newly introduced substreets are illustrated by gray boxes. As it
can be seen, the individual substreets of a given street N are a local cluster in the feeder.
The grouping of the substreets as presented here took the arrangement of the residences in
the feeder into account. Houses close to each other are added to a cluster. Since the feeder
consists of many nodes, a simplified illustration of the feeder’s structure is given at this
point. A full representation of the feeder can be found in [14].

Nodes

Entry Point
Node
Substreet

Overhead Line
Underground Line
Switch

Legend
Links

A1

A2

A3

A4

A1

B3

B2

B1C3

C1 C2

C4

D1
D2

D3

D5D4

D6

E1

E2

E5
E3

E4

F1

F2

F3

G1

G3

G2

G4

Figure 6.4: Power network model of the Price Update Scenario.

56

6.3 Price Update Scenario

6.3.3 Results

Because of the complexity of the Price Update Scenario, the residences are arranged in lo-
gical groups of streets and substreets. Table 6.3 summarizes the grouping process as already
shown in Figure 6.4. Only the streets will be of focus in the following since the substreets
do not provide additional information. A street X is comprised of the substreets Xi with
i ∈ N. Table 6.3 gives an overview of the seven streets to be found in the Price Update
Scenario. The number of residences per street varies from 15 to 45. This is due to the struc-
ture of the distribution test feeder used in this scenario. The number of substreets is given
as well in the table. As mentioned in Section 5.3, randomly chosen residences are selected
as representative for a particular street. The meter reading from this residence will repre-
sent the voltage of the entire street. The IDs of the selected residences are given in the last
column. These representatives will be looked at in the following discussion of simulation
results. In the following, the terms street and representative are regarded as interchangeable.

Street Number of Number of ID of random
Name residences substreets representative
A 15 4 10
B 45 3 102
C 31 4 121
D 28 6 76
E 28 5 23
F 15 3 47
G 27 4 187
Total 189 29

Tabelle 6.3: Logical organization of residences and their properties for the Price Update
Scenario.

The results of the executed simulation for the Price Update Scenario are presented in Fi-
gure 6.5. The voltage levels at the meter of each of the seven representatives is shown
by a individual curve. The curve is labeled after their corresponding street. For example,
Street A is the recorded value of Meter 10 and so on. For the simulation, the notifications
have all been sent at the same instance of time. The time these packets are received by the
individual components, however, differs. The simulation is run for 10 seconds, the messa-
ges are sent at Second 1. After 3 seconds the streets A, B, and C receive the notifications and
after 5 seconds, the remaining streets have received the notifications as well. This two se-
cond delays are due to a bottleneck, that occurred at router0 and router2 respectively
(see Figure 6.3). Initially, all streets operate at the required voltage of above 120 V (dotted
line). After the reception of the price update notifications, these values begin to fall by an
average amount of 0.653V.

57

6 Simulation & Results

0 1 2 3 4 5 6 7 8 9 10
119.8

120

120.2

120.4

120.6

120.8

121

121.2

121.4

121.6
Voltage drop of selected residences after increase in demand

time [s]

v
o
lt
a
g
e
 [
V

]

Street A
Street B
Street C
Street D
Street E
Street F
Street G
120V
Message

Figure 6.5: Measured voltage levels of representative residences of the streets A - G in the
Price Update Scenario.

58

6.3 Price Update Scenario

The voltage drop occurring in each street is summarized in Table 6.4. For some streets,
the drop does not affect the required operating level but for Street B and Street C the vol-
tage value drops below 120 V. For Street B, the voltage dropped from the initial value of
120.603V to 119.988V (a difference of 0.615V). For Street C, the drop was from 120.573V to
119.878V (0.695V difference). In a real world scenario, the result could be brownouts in the
residences located in those streets. A larger voltage drop caused by an increased number
of appliances, that are connected to the grid at the same time, was expected. With 189 si-
mulated residences, the occurring voltage drop was for most of them without any further
consequences. Some of the residences would suffer from dimmed lights and similar nui-
sances but drastic effects on the residences or the distribution network are not discovered.

Street Initial Voltage after Difference
Name voltage received message
A 120.715 120.380 0.335
B 120.603 119.988 0.615
C 120.573 119.878 0.965
D 121.306 120.662 0.644
E 121.392 120.594 0.798
F 121.405 120.598 0.807
G 121.199 120.521 0.678
Average 121.038 120.374 0.653

Tabelle 6.4: Voltage drops occurring in streets of the Price Update Scenario after receiving
price update notifications.

59

7 Conclusion & Future Work

In this chapter, the results of the thesis are summarized. In Section 7.1, conclusions are
presented. Section 7.2 outlines possibilities for future work and addresses open problems.

7.1 Conclusion

In this thesis, a framework for conducting security analyses in future Smart Grids is deve-
loped, the Communication & Power Network Co-Simulation (CoPS). With CoPS, attacks
on Smart Grids originating from the integrated communication network are defined, exe-
cuted, and their results are examined. Since Smart Grids will play an important role in the
future of the energy sector, this could draw interest from power companies. In addition,
private consumers and prosumers are going to be integrated into the Smart Grid via smart
meter and gateways, that are also a potential target for attackers. Manipulated messages
propagated though the network infrastructure could have far-reaching consequences on
the security of supply. To study the results of such attacks and to create a sense of awa-
reness among stakeholders, modeling and simulation is the tool of choice. A concept for
the integration of the required simulators is developed and implemented. The framework
combines for the first time the simulators OMNeT++ and GridLAB-D together to a co-
simulation. It is the first Smart Grid security simulation framework composed from open
source frameworks. Moreover, for the first time both domains customer and energy distri-
bution are taken into account for security studies on Smart Grids. Two attack vectors are
conceptualized, implemented, and simulated using the framework. The generated data is
analyzed and used to estimate the potential consequences of the simulated attack vectors.
The Shutdown Scenario is the first scenario and acts as the proof of concept for CoPS. It
further demonstrates the effects a forcible removed component can have on the electrical
grid and the security of supply. The Price Update Scenario gives an first insight in the
full capabilities of CoPS. Inside a complex and realistic distribution network, a total of 189
residences with smart meter and gateways are simulated. The gateways all receive ma-
nipulated price update notifications and according to the new price, the demand of the
respective residence is changed to meet the new market conditions, i.e., household app-
liances are turned on or off. The findings of the simulation run shows, that this scenario
leads to a voltage drop, which might cause the voltage to go down below the threshold
for the required voltage of 120V. However, the magnitude of the drops is with an average
difference of 0.653 V not as high as expected. The simulated scenario with 189 residences
was, however, a small scale scenario. In a bigger network with more consumers the effects
of such an attack would be more extensive. Furthermore, the water heater objects used
as appliances are not characterized by high demand as opposed to, for example, electric
cars. The study of a large scale scenario with different types of consumers, as outlined
in the subsequent section, might provide interesting results. In general, the results of the

61

7 Conclusion & Future Work

simulations show, that securing of packet traffic between the components is necessary to
counteract the effects of the described attack vectors. The integrity and authenticity of the
transmitted control commands must be guaranteed. The further use of unprotected SCA-
DA networks connected via public networks is not advisable.

7.2 Future Work

The Price Update Scenario shows, that an effect of manipulated price update messages is
present. In the simulated power network, this has only a low impact on the security of sup-
ply. This will probably be different in other scenarios, where not only private consumers
are present. The energy consumption by sector in Germany in 2011 is given in Figure 7.1.
The energy consumption of private consumers is 27% but the combined energy consump-
tion of the industry and commerce sector is as high as 70% [19]. This raises the question,
if the study of an attack vector, which targets private households, needs to be conducted
with the effort it has been previously. For this reason, including industry and commerce
might be a reasonable consideration for further research. For this, the Commercial modu-
le of GridLAB-D could be used, when it has been extended further. At the moment, only
models for small office buildings are included but an extension of the module in future
versions is planned. In combination with the Generators module, the simulation could
further be extended to include, for example, wind mills.

27%

42%

28%

3%

Diagrammtitel

Households Industry Commerce Transport

Figure 7.1: Energy consumption by sector in Germany in 2011 (Source: [19]).

7.2.1 Power Network Model

GridLAB-D also offers its own wholesale market module providing integration of pricing
models for energy into the simulation. Integrating the market domain into the simulation
increases the detail of the simulation further. Also, this a step towards a simulation frame-
work encompassing all aspects of the Smart Grid. The market module could be replaced
with AMES, a wholesale power market test bed developed for research purposes. AMES
offers a more detailed model of the market and has already been employed successfully

62

7.2 Future Work

with GridLAB-D in a co-simulation with a concept similar to that of CoPS [10]. In addition,
using pricing models also offers the possibilities of providing an estimate for the damage
caused by an attack. The Integrated Retail and Wholesale (IRW) project uses a synchronous
execution mode. The co-simulation of IRW employs GridLAB-D and AMES, an in-house
development, to conduct market research on price developments in Smart Grids. A spe-
cialized data management program and a MySQL server are used for message exchange
and synchronization.
In addition of employing previously unused GridLAB-D modules, the already used mo-
dules could be extended. In particular, the Powerflow module is well-suited for this. The
components of the Powerflow module provide currently no possibility for reading out
frequency values measured in Hertz. These values, however, are an important indicator
for the stability of the power network [53]. Being able to tap into the frequency and provi-
de proper readings of it, provides new ways of examining the effects of an attack. The sta-
bility of the energy supply could be examined more closely. Additionally, the Powerflow
module could be enhancement by improving the underground and overground line mo-
dels. Simulating the overload of a line is currently also not possible. However, this addition
might prove challenging since it will probably require modification to the solver methods
because the underground and overground links are an essential part for the computation
of the power demand.
The electrical components modeled in CoPS are based on the conditions of the power net-
work in the USA. This is due to nature of GridLAB-D’s funding by the U.S. Department of
Energy. For future investigation, however, models reflecting the conditions in Germany are
more reasonable. This includes the adjustment of voltage levels found at low and middle
voltage areas. Also, a feeder model derived from base data of German feeder models is
meaningful. Another part for localization is the data for the weather model. The weather
does not have any influence on the power network models in CoPS so far since no solar
collectors or wind mills have been employed into the simulated scenarios. Models for tho-
se components, however, are present in CoPS and could be used in future simulations. The
weather data needs to be in the Typical Meteorological Year (TMY) format [48].

7.2.2 Communication Network Model

The scheduler for OMNeT++ used by CoPS is capable of real-time simulation. For this re-
ason, hardware-in-the-loop simulations are possible since the clock of an external device
could be synchronized with the internal clock of the simulation. This offers the possibility
of including real life components, for example smart meter and gateways, into the simula-
tion. This could lead to an entire test bed for those components.
The packet-based communication in OMNeT++ is an area where enhancements could pro-
vide a better simulation model. At this point, packet-based communication only occurs in
the simulation as a result of an user action. This is not very realistic since a model for the In-
ternet is included in the communication network. It is more likely, that other components,
for example a private PC located at the customer, utilize this network as well. Therefore,
models adding traffic to the network could be included in CoPS. This could be done, for
example, with OMNeT++’s InternetBrowser component [4].
The traffic between the gateway and the smart meter is modeled at an abstract level, mea-
ning no protocols are employed on this data channel. SCADA systems use their own family

63

7 Conclusion & Future Work

of protocols [17]. A large number of these protocols exists, which makes the implementati-
on of each SCADA protocol a time consuming task. Implementation of a small number of
selected protocols is much more feasible. Existing implementations of Modbus and DNP3
for older versions of OMNeT++ exist and could be ported to CoPS [44]. Other protocols
worth considering due to their prevalence are PROFIBUS and IEC 60870.5.
During simulation it has been found, that the Price Update Scenario takes a long time to
load all of the 189 modeled houses in OMNeT++. In [40], the authors present a scalable so-
lution encompassing OMNeT++, that is capable of simulating 10.000 houses. The modeled
large scale scenario is related to Smart Grid but does not contain a model for the power
network so far. As mentioned in the beginning of Section 7.2, a large scale model might
provide different results then the model used in the Price Update Scenario.

64

Appendix

65

Appendix A Naming Conventions for
GridLAB-D

Listed below is the naming convention used to identify objects in large GridLAB-D models.
The numbers represent the IDs assigned to each object inside the model. Each relevant
module (see Chapter 2.2.3) is assigned a four digit namespace. The configuration objects
of the Powerflow module are assigned to an individual namespace due to their quantity.
The objects found in this namespace are then grouped accordingly. For example, the first
node of a model has the ID 1100 assigned to, the second node 1101 and so on.

• 1xxx Powerflow Module
Components of the distribution network.

– 10xx Regulators

– 11xx Nodes

– 12xx Meter

– 13xx Triplex Nodes

– 14xx Triplex Meter

– 15xx Transformers

– 16xx Overground Lines

– 17xx Underground Lines

– 18xx Triplex Lines

– 19xx Switches

• 2xxx Powerflow Module Configurations
Configuration objects for the distribution network components.

– 20xx Regulator Configuration

– 21xx Line Configuration

– 22xx Line Spacing

– 23xx Triplex Line Configuration

– 25xx Transformer Configuration

– 26xx Overhead Line Conductor

– 27xx Underground Line Conductor

– 28xx Triplex Line Conductor

67

A Naming Conventions for GridLAB-D

• 3xxx Residential Module
Houses and their appliances.

– 30xx Houses

– 31xx - 32xx Enduses, i.e. household appliances

* 310x Clotheswasher

* 311x Dishwasher

* 312x Dryer

* 313x Evcharger

* 314x Freezer

* 315x Lights

* 316x Microwave

* 317x Occupantload

* 318x Plugload

* 319x Range

* 320x Refrigerator

• 4xxx Generators Module
Energy generation from renewable sources and energy storage components. This
module is developed mostly by the community.

– 40xx Wind Mills

– 41xx Solar Collectors

– 42xx Inverter

– 43xx Battery

– 44xx Diesel Generator

– 45xx Microturbine

• 5xxx Reliability Module
Objects for reliability analysis. In the thesis used for opening and closing switches.

– 50xx Fault Check

– 51xx Metrics

– 52xx Eventgen

– 53xx Power Metrics

• 6xxx Tape Module
Recorder for reading measurements inside the simulation and for exporting the mea-
sured values.

– 60xx Recorders

– 61xx Multi Recorders

68

Appendix B How to use the Framework

This chapter outlines how CoPS is supposed to be used. First, the installation procedure is
explained in Section B.1. Then, Section B.2 explains how the included demo simulations of
the framework can be executed and run. A tutorial for adding new simulations to CoPS is
presented in the subsequent Section B.3.

B.1 Installation of CoPS

CoPS has been developed on Windows 7 x64 with the latest patches as of May 2013. For
modeling communication networks, OMNeT++ 4.2.2 and INET 2.1 were used. CoPS will
probably work with newer versions of both software packages, however, this has not been
tested. The installation of OMNeT++ and INET follows the instructions included in the
respective package. A bug in the linker of MinGW for Windows 7 x64 might cause INET
not to be built properly. The issue is resolved by reinstalling both, OMNeT++ and INET.
The power network models use GridLAB-D 2.2. Newer versions of GridLAB-D might not
be compatible. Further, the .NET 4.5 framework is required, as well as Visual Studio 2012.
To use the network capability of CoPS, modifications to the hosts file are necessary. The
following entry has to be added to the hosts file:

127.0.0.1 localhost cops.aisec

Listing B.1: Required entry into the hosts file of Windows.

B.2 Running the included simulations

Two demo applications, the Shutdown Scenario and the Price Update Scenario (see Chap-
ter 5.2 and Chapter 5.3) respectively, are included in CoPS. The following steps are neces-
sary for using any of these demos:

1. Start OMNeT++ and run the respective simulation of the communication network.
This is achieved by right-clicking the omnetpp.ini file in the model’s folder and se-
lecting Run As OMNeT++ Simulation. After the model is loaded, start the simulation
of the communication network by pressing Run. The components with sockets then
immediately start listening for incoming packets.

2. Run the .NET server application and start the server. The address of the server is
preset to http://cops.aisec:8080/.

3. Run the main GUI of CoPS (see Figure 5.8).

69

B How to use the Framework

a) Select the respective simulation.

b) Load the corresponding model of the power network.

c) The Winsock server is preset to http://localhost:4242 and does not need
to be changed.

d) Do simulation specific tasks by navigating to the corresponding tab on the GUI.
In the Shutdown Scenario, components are taken offline by selecting them. In
the Price Update Scenario, prices are changed and sent. If the prices have de-
cimal places, use the American format for separating them, i.e., a dot (“.”) is
required instead of a comma (“,”).

e) When finished, i.e., the last task has been conducted, press the finalize button to
simulate the last step and to finish the simulation.

4. The results computed by GridLAB-D during each simulation step are not deleted.
They are, instead, stored in the same folder where the power network model file is
located (see Step 3b).

The execution order for steps 1 and 2 of the above enumeration is interchangeable.

B.3 Adding new simulations

The architecture of CoPS is designed to allow adding own simulations. Each scenario re-
quires a model for communication network and for the power network. The implementa-
tions of the demo scenarios, Price Update and Shutdown, can be taken as guidelines (see
Chapter 5.2 and Chapter 5.3). It is recommended to enforce the naming conventions listed
in Appendix A.
The simulations further need to be integrated in .NET. This is done by adding a new simu-
lation class, which is subclassed from the abstract Simulation class (see Chapter 5.4.2).
Most of the existing implementation for the included scenarios can be adopted for the new
classes. Only the simulation specific tasks might require some additional work.
The user interface needs to be updated as well. This is done by adding a new tab to the
TabControl, where the user is able to perform simulation specific actions. These acti-
ons need to implemented in the aforementioned new simulation class. If new components
are used inside the power network model, images for displaying these components in the
PowerStructure user control need to be provided. The images used by the included si-
mulations have the size 48x48 and are Portable Network Graphics (PNG). However, other
sizes and file types may be used as well. The new images must be added to the images
folder inside of Visual Studio. Their Build Action property needs to be set to Embedded Re-
source. They further must be loaded inside the constructor of the PowerStructure user
control in order to be used by the control. The existing implementation provides the details
for this task.

70

List of Figures

1.1 Estimated change in the energy mix of Germany until 2030 (Source: [19]). . 2
1.2 Conceptual structure of a Smart Grid (Source: [17]). 3

2.1 Conceptual view of SCADA system architecture. 8
2.2 Simplified domains and connections among them (Source (updated): [18]). . 9
2.3 Structural view of ns2’s main components. 12
2.4 OMNeT++’s NED Editor showing a simple UDP-based network. 13

4.1 Categorization of existing co-simulation frameworks. 21
4.2 HLA federation. 22
4.3 Time-stepped simulation run. 24
4.4 Asynchronous execution of a time-stepped simulation run. 26
4.5 Conceptual view of the Shutdown attack. 30
4.6 Conceptual view of the Price Update attack. 32

5.1 Components and packages of the communication and power network co-
simulation. 34

5.2 Gateway component of CoPS during runtime of a Price Update attack. . . . 36
5.3 Subnetworks implemented in CoPS. 37
5.4 Visualization of a simple GridLAB-D distribution feeder. 38
5.5 Classes for implementation of the Strategy Pattern in CoPS. 43
5.6 Asynchronous execution of the co-simulation with CoPS. 44
5.7 Algorithm for advancing the simulation. 46
5.8 Main GUI of CoPS during a Shutdown simulation. 47
5.9 Actions and states of CoPS’s main GUI. 48
5.10 Visualized power network structure for the Price Update Scenario. 49

6.1 Communication network model of the Shutdown Scenario. 52
6.2 Power network model of the Shutdown Scenario. 53
6.3 Communication network model of the Price Update Scenario. 55
6.4 Power network model of the Price Update Scenario. 56
6.5 Measured voltage levels of representative residences of the streets A - G in

the Price Update Scenario. 58

7.1 Energy consumption by sector in Germany in 2011 (Source: [19]). 62

71

References

[1] IEEE Guide for Electric Power Distribution Reliability Indices. IEEE Std 1366-2003,
pages 1–50, 2003.

[2] IEEE Standard for Modeling and Simulation (M & S) High Level Architecture (HLA)–
Framework and Rules. IEEE Std 1516-2010 (Revision of IEEE Std 1516-2000), pages 1–
38, 2010.

[3] INET framework 2.0 for OMNeT++. Manual., 2011.

[4] INET framework 2.1 for OMNeT++. Manual., 2012.

[5] Programmable controllers - Part 3: Programming languages. IEC 61131-3 ed 3.0, pages
1–464, 2013.

[6] International Energy Agency. World Energy Outlook, 2012. OECD/IEA, 2012.

[7] Thomas Andrew. Developing SCADA Simulations with C2WindTunnel. 2011.

[8] Martin Brunner, Hans Hofinger, Christoph Krauß, Christopher Roblee, P. Schoo, and
S. Todt. Infiltrating critical infrastructures with next-generation attacks. Fraunhofer
Institute for Secure Information Technology (SIT), Munich, 2010.

[9] H.J. Bungartz, S. Zimmer, M. Buchholz, and D. Pflüger. Modellbildung und Simulation:
Eine Anwendungsorientierte Einführung. Springer London, Limited, 2009.

[10] Chengrui Cai, Pedram Jahangiri, Auswin George Thomas, Huan Zhao, Dionysios C.
Aliprantis, and Leigh Tesfatsion. Agent-based simulation of distribution systems with
high penetration of photovoltaic generation. In Power and Energy Society General Mee-
ting, 2011 IEEE, pages 1–7. IEEE, 2011.

[11] Rohan Chabukswar, Bruno Sinópoli, Gabor Karsai, Annarita Giani, Himanshu Nee-
ma, and Andrew Davis. Simulation of network attacks on SCADA systems. In Pro-
ceedings of the First Secure Control Systems Workshop, Cyberphysical Systems Week, Stock-
holm, Sweden, 2010.

[12] D.P. Chassin, K. Schneider, and C. Gerkensmeyer. GridLAB-D: An open-source power
systems modeling and simulation environment. In Transmission and Distribution Con-
ference and Exposition, 2008. T&D. IEEE/PES, pages 1–5. IEEE, 2008.

[13] Claudia Eckert and Christoph Krauß. Sicherheit im Smart Grid - Herausforderungen
und Handlungsempfehlungen. Datenschutz und Datensicherheit, 8:535–541, 2011.

73

References

[14] Michael A. Cohen. GridLAB-D Taxonomy Feeder Graphs. http://
emac.berkeley.edu/gridlabd/taxonomy_graphs/. Accessed on March 4,
2013.

[15] Wireless Communication and Information Processing Lab. Comparative view of OM-
Net++ and ns-2. http://www.wicip.ca/index.php/wicip-resources/82-
wicip-main/wicip-resource-articles/74-wicip-ns2-or-omnetpp. Ac-
cessed on January 11, 2013.

[16] C. Eckert. IT-Sicherheit: Konzepte, Verfahren, Protokolle. Oldenbourg, 2008.

[17] Claudia Eckert and Christoph Krauß. Sicherheit im Smart Grid. Datenschutz und
Datensicherheit-DuD, 35(8):535–541, 2011.

[18] Claudia Eckert and Christoph Krauß. Sicherheit im Smart Grid - Sicherheitsarchi-
tekturen für die Domänen Privatkunde und Verteilnetz unter Berücksichtigung der
Elektromobilität. Alcatel-Lucent Stiftung, Stiftungsreihe 96, 2012.

[19] Arbeitsgemeinschaft Energiebilanzen eV. Auswertungstabellen zur Energiebilanz für
die Bundesrepublik Deutschland 1990 bis 2011, 2012.

[20] Miguel A. Erazo, Ting Li, Jason Liu, and Stephan Eidenbenz. Toward comprehensive
and accurate simulation performance prediction of parallel file systems. In Dependable
Systems and Networks (DSN), 2012 42nd Annual IEEE/IFIP International Conference on,
pages 1–12. IEEE, 2012.

[21] J.C. Fuller and K.P. Schneider. Modeling Wind Turbines in the GridLAB-D Software
Environment. Journal of Undergraduate Research, 9, 2009.

[22] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Pearson Education, 1994.

[23] Tim Godfrey, Sara Mullen, Roger C. Dugan, Craig Rodine, David W. Griffith, and
Nada Golmie. Modeling smart grid applications with co-simulation. In Smart Grid
Communications (SmartGridComm), 2010 First IEEE International Conference on, pages
291–296. IEEE, 2010.

[24] Ian Griffiths. Programming C# 5.0: Building Windows 8, Web, and Desktop Applications
for the. NET 4.5 Framework. O’Reilly Media, Incorporated, 2012.

[25] Thomas R. Henderson, Mathieu Lacage, George F. Riley, C. Dowell, and J.B. Kopena.
Network simulations with the ns-3 simulator. SIGCOMM demonstration, 2008.

[26] Kenneth Hopkinson, Xiaoru Wang, Renan Giovanini, James Thorp, Kenneth Birman,
and Denis Coury. EPOCHS: A platform for agent-based electric power and commu-
nication simulation built from commercial off-the-shelf components. Power Systems,
IEEE Transactions on, 21(2):548–558, 2006.

[27] K.M. Hopkinson, K.P. Birman, R. Giovanini, D.V. Coury, X. Wang, and J.S. Thorp.
EPOCHS: Integrated commercial off-the-shelf software for agent-based electric power

74

http://emac.berkeley.edu/gridlabd/taxonomy_graphs/
http://emac.berkeley.edu/gridlabd/taxonomy_graphs/
http://www.wicip.ca/index.php/wicip-resources/82-wicip-main/wicip-resource-articles/74-wicip-ns2-or-omnetpp
http://www.wicip.ca/index.php/wicip-resources/82-wicip-main/wicip-resource-articles/74-wicip-ns2-or-omnetpp

References

and communication simulation. In Simulation Conference, 2003. Proceedings of the 2003
Winter, volume 2, pages 1158–1166 vol.2, 2003.

[28] Vinay M. Igure, Sean A. Laughter, and Ronald D. Williams. Security issues in SCADA
networks. Computers & Security, 25(7):498–506, 2006.

[29] Battelle Memorial Institute. GridLAB-D Repository. http://sourceforge.net/
projects/gridlab-d/. Accessed on February 13, 2013.

[30] U.C. Irvine, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.
Hypertext Transfer Protocol – HTTP/1.1. RFC 2616, 1999.

[31] Pedram Jahangiri, Di Wu, Wanning Li, Dionysios C. Aliprantis, and Leigh Tesfatsion.
Development of an agent-based distribution test feeder with smart-grid functionality.
In Power and Energy Society General Meeting, 2012 IEEE, pages 1–7. IEEE, 2012.

[32] W.H. Kersting. Radial distribution test feeders. In Power Engineering Society Winter
Meeting, 2001. IEEE, volume 2, pages 908–912. IEEE, 2001.

[33] Michael Lesk. The new front line: Estonia under cyberassault. Security & Privacy,
IEEE, 5(4):76–79, 2007.

[34] Martin Lévesque, Da Qian Xu, Géza Joós, and Martin Maier. Communications and
power distribution network co-simulation for multidisciplinary smart grid experi-
mentations. In Proceedings of the 45th Annual Simulation Symposium, page 2. Society for
Computer Simulation International, 2012.

[35] W. Li, A. Monti, M. Luo, and Roger A. Dougal. VPNET: A co-simulation framework
for analyzing communication channel effects on power systems. In Electric Ship Tech-
nologies Symposium (ESTS), 2011 IEEE, pages 143–149. IEEE, 2011.

[36] Hua Lin. Communication Infrastructure for the Smart Grid: A Co-Simulation Based Stu-
dy on Techniques to Improve the Power Transmission System Functions with Efficient Data
Networks. PhD thesis, Virginia Polytechnic Institute and State University, 2012.

[37] Hua Lin, Santhosh S. Veda, Sandeep S. Shukla, Lamine Mili, and James Thorp. GE-
CO: Global Event-Driven Co-Simulation Framework for Interconnected Power Sy-
stem and Communication Network. Smart Grid, IEEE Transactions on, 3(3):1444–1456,
2012.

[38] Christoph P. Mayer and Thomas Gamer. Integrating real world applications into OM-
NeT++. Institute of Telematics, University of Karlsruhe, Karlsruhe, Germany, Tech. Rep.
TM-2008-2, 2008.

[39] Steven McCanne, Sally Floyd, Kevin Fall, Kannan Varadhan, et al. Network simulator
ns-2, 1997.

[40] Christian Müller, Hanno Georg, and Christian Wietfeld. A modularized and distribu-
ted simulation environment for scalability analysis of smart grid ICT infrastructures.

75

http://sourceforge.net/projects/gridlab-d/
http://sourceforge.net/projects/gridlab-d/

References

In Proceedings of the 5th International ICST Conference on Simulation Tools and Techni-
ques, pages 327–330. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2012.

[41] B. Müller-Rathgeber and Holm Rauchfuss. A cosimulation framework for a distribu-
ted system of systems. In Vehicular Technology Conference, 2008. VTC 2008-Fall. IEEE
68th, pages 1–5. IEEE, 2008.

[42] Nitsch, Joachim and Pregger, Thomas and Scholz, Yvonne and Sterner, Michael and
Gerhardt, Norman and von Oehsen, Amany and Pape, Carsten and Saint-Drenan,
Yves-Marie and Wenzel, Bernd. Langfristszenarien und Strategien für den Ausbau
der erneuerbaren Energien in Deutschland bei Berücksichtigung der Entwicklung in
Europa und global. Entwurf Zwischenbericht. Mai, 2010.

[43] James Nutaro, Phani Teja Kuruganti, Laurie Miller, Sara Mullen, and Mallikarjun
Shankar. Integrated hybrid-simulation of electric power and communications sy-
stems. In Power Engineering Society General Meeting, 2007. IEEE, pages 1–8. IEEE, 2007.

[44] Carlos Queiroz, Abdun Mahmood, and Zahir Tari. SCADASim - A framework for
building SCADA simulations. Smart Grid, IEEE Transactions on, 2(4):589–597, 2011.

[45] Derek Riley, Emeka Eyisi, Jia Bai, Xenofon Koutsoukos, Yuan Xue, and Janos Szti-
panovits. Networked control system wind tunnel (NCSWT): an evaluation tool for
networked multi-agent systems. In Proceedings of the 4th International ICST Conference
on Simulation Tools and Techniques, pages 9–18. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2011.

[46] James A. Rowson. Hardware/software co-simulation. In Design Automation, 1994.
31st Conference on, pages 439–440. IEEE, 1994.

[47] Victorino Sanz. Hybrid System Modeling: Using the Parallel DEVS Formalism and
the Modelica Language. 2011.

[48] Kevin P. Schneider, Yousu Chen, David P. Chassin, Robert G. Pratt, David W. Engel,
and Sandra Thompson. Modern grid initiative: Distribution taxonomy final report. Pacific
Northwest National Laboratory, 2008.

[49] Kevin P. Schneider, Yousu Chen, D. Engle, and D. Chassin. A taxonomy of North
American radial distribution feeders. In Power & Energy Society General Meeting, 2009.
PES’09. IEEE, pages 1–6. IEEE, 2009.

[50] SZ Online. Blackout legt München lahm. Süddeutsche Zeitung. http://sz.de/
1.1523769. Accessed on December 12, 2012.

[51] András Varga and Rudolf Hornig. An overview of the OMNeT++ simulation envi-
ronment. In Proceedings of the 1st international conference on Simulation tools and techni-
ques for communications, networks and systems & workshops, page 60. ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering), 2008.

[52] András Varga. OMNeT++ User Manual Version 4.2.2. OpenSim Ltd., 2011.

76

http://sz.de/1.1523769
http://sz.de/1.1523769

References

[53] Von Meier, Alexandra. Electric power systems: a conceptual introduction. Wiley-
Interscience, 2006.

[54] Elias Weingartner, Hendrik Vom Lehn, and Klaus Wehrle. A performance compari-
son of recent network simulators. In Communications, 2009. ICC’09. IEEE International
Conference on, pages 1–5. IEEE, 2009.

[55] Zhi Zhang, Zhonghai Lu, Qiang Chen, Xiaolang Yan, and Li-Rong Zheng. COSMO:
CO-simulation with MATLAB and OMNeT++ for indoor wireless networks. In Global
Telecommunications Conference (GLOBECOM 2010), 2010 IEEE, pages 1–6. IEEE, 2010.

77

	Abstract
	Zusammenfassung
	Introduction
	Motivation
	Problem Statement
	Structure of the Thesis

	Background
	Smart Grids
	Simulation of Smart Grids
	Co-Simulation Primer
	Communication Network
	Power Network

	Related Work
	Communication/Power Co-Simulation
	Security simulations for SCADA systems
	Scope of the Thesis

	Concept
	Co-Simulation Framework
	General Approaches
	Custom Approaches
	Discussion

	Simulated Attacks
	Shutdown Scenario
	Price Update Scenario

	Implementation
	Co-Simulation Architecture Overview
	Communication Network Model
	Power Network Model
	Integration
	Communication
	Simulations
	GUI

	Simulation & Results
	Experimental Setup
	Shutdown Scenario
	Communication Network Model
	Power Network Model
	Results

	Price Update Scenario
	Communication Network Model
	Power Network Model
	Results

	Conclusion & Future Work
	Conclusion
	Future Work
	Power Network Model
	Communication Network Model

	Appendix
	Appendix Naming Conventions for GridLAB-D
	Appendix How to use the Framework
	Installation of CoPS
	Running the included simulations
	Adding new simulations

	List of Figures
	References

