
AppRAy:
UseRdRiven And fUlly AUtomAted
 AndRoid App secURity Assessment

dennis titze, philipp stephAnow, dR. JUliAn schütte

F r a u n h o F e r I n s t I t u t e

F o r a p p l I e d a n d I n t e g r at e d s e c u r I t y

App-Ray: User-driven and Fully

Automated Android App Security

Assessment

Dennis Titze, Philipp Stephanow, Julian Schuette

{titze,stephanow,schuette}@aisec.fraunhofer.de

December 22, 2013

Summary

Android is currently the prevailing mobile operating system accompanied by a

huge number of apps available at various online market platforms. To protect

against malicious or vulnerable apps, Android comprises a permission-based se-

curity model and some, but yet opaque security checks conducted by Google

Play. Under these conditions, assessing the security of an app according to user-

specific requirements is hardly possible. Nevertheless, end users and profession-

als, such as IT administrators, need to understand apps’ security implications prior

to installation or rollout. To address this need, we present App-Ray, a novel secu-

rity scanning framework, which analyses apps according to user-specific security

requirements. The contribution of our paper is a method to refine such require-

ments to specific test criteria, and to automatically combine static and dynamic

analysis methods for their evaluation. We demonstrate the feasibility of our ap-

proach by implementing a prototype and running user-specific analysis on 50

apps.

Fraunhofer AISEC

App-Ray: User-driven and Fully Automated Android App Security

Assessment

2

Contents

1 Introduction 4

2 Related work 6

3 Framework design 8

3.1 Meta data analysis . 8

3.2 Static analysis . 9

3.3 Dynamic analysis . 9

3.4 Combination of static and dynamic tests 10

3.5 Evaluation of the analysis . 10

3.6 Integration into existing threat assessment processes 11

4 Prototype implementation 13

4.1 Practical Application . 13

4.2 Results . 14

5 Conclusion 16

Fraunhofer AISEC

App-Ray: User-driven and Fully Automated Android App Security

Assessment

3

1 Introduction

The paramount success of the Android smartphone operating system and its

openness have lead to a huge number of apps available from online market plat-

forms, such as Google Play. In these online markets, many apps contain vulner-

abilities, data leaks, or threaten users’ privacy by collecting personal information

and tracking their behavior. Such security breaches do not necessarily spring from

malicious intents of a developer. Flaws that lead to security issues often result

from programming errors, caused by time pressure or lack of experience. Unfor-

tunately, such flaws and subsequent vulnerabilities are usually not covered by the

platform’s security model. This problem also applies to very popular apps, which

enjoy trust by the majority of users. Although the permission model of Android

is able to prevent apps from using functionality they did not request, e.g., access

to Internet resources, it does not support to check the usage of these resources

in more detail, e.g., for legitimate URLs, proper use of Transport Layer Security

(TLS), or the amount of transferred data. Users have no other possibility but to

accept all permissions required when installing an app, even though an app may

be over-permissive or contain undesired functionality. Therefore, a user cannot

assess whether an app actually complies with her security requirements, even if

it remains within the Android permission model.

Complicating the issue even further, nowadays private smartphones are often

used for professional purposes. In this Bring-Your-Own-Device (BYOD) context,

it has to be decided which business apps can be considered secure, for example,

before distributing them over a private marketplace or simply recommending

them to employees. Of course, these apps must not contain any malicious code,

but it is also important that they do not leak any information, for instance, when

being used in insecure networks. Furthermore, it has to be assessed if these apps

comply with the overall security guidelines of the company and do not contain

hidden functionality, such as taking pictures or recording audio input.

To address these challenges, we propose a framework called App-Ray. The two

contribution of this paper are:

User-specific configuration of detection mechanisms. Starting from high-level se-

curity requirements, user-specific declaration of a security requirements catalog

is derived and mapped to specific detection rules.

Automated combination of static and dynamic detection techniques. Accord-

ing to the detection rules specified by the user, static and dynamic detection

mechanisms are automatically combined and executed. App-Ray allows for in-

terweaving of different types of analysis techniques, which, to the best of our

knowledge, is not supported by other tools.

Fraunhofer AISEC

App-Ray: User-driven and Fully Automated Android App Security

Assessment

4

1 Introduction

The remainder of the paper is structured as follows: The next section gives a brief

overview of related work. Section 3 introduces the combination of static and

dynamic detection mechanisms, presents the architecture of App-Ray and details

on user-specific configuration of malware detection techniques. In Section 4, the

prototypical implementation is presented. Section 5 concludes this paper and

provides an outlook on future work.

Fraunhofer AISEC

App-Ray: User-driven and Fully Automated Android App Security

Assessment

5

2 Related work

Work related to ours is concerned with automated static and dynamic analysis of

android apps and unassisted software analysis in general. Also, our framework

includes various existing tools for analyzing Android apps, such as apktool [4], a

tool for unpacking Android application package (APK) files and inspecting their

manifest file, and smali [5], an assembler/disassembler for dex bytecode. While

these are helpful tools for creating a framework like App-Ray, they provide lim-

ited functionality and do not aim at a comprehensive and automated security

inspection of apps as we do.

Dynamic analysis aims to identify vulnerabilities and data leaks at runtime, i.e.,

by executing and monitoring an application. A straight-forward approach is un-

dertaken by [9] who executes an app within an emulator and simulates user

interaction via the Google monkey service. The goal of this work is to observe

the behavior of the app in terms of system calls and network traffic. [24] presents

MADAM, a framework which monitors execution at different layers to identify

malware.

Dynamic taint analysis takes on a more systematic, but heavyweight approach. A

prominent solution is TaintDroid [15], a specially crafted Android image capable

of detecting sensitive data which is about to leave the device via untrusted sinks.

However, this approach suffers from two main drawbacks: Firstly, it requires

significant modification of the Android middleware and kernel. Secondly, it does

not actively search for vulnerabilities but rather enables the system to detect such

when they occur. Dynamic tainting alone is thus not suited for a fully automated

analysis of apps. Nevertheless, TaintDroid provides meaningful insights and has

been picked up and extended by other tools such as droidbox [1].

One way to control the coverage of control flow paths is symbolic execution.

Here, an app is not actually executed, but variables are rather filled by “symbolic”

values and the analysis creates logical statements for each variable as it traverses

the control flow paths. On the resulting set of statements, model checking can

be applied in order to identify infeasible paths or input sets leading to a specific

execution path. SymDroid, a symbolic execution framework for Android has

been proposed in [21]. A slightly different approach, leveraging the S2E [12]

framework for “partial” symbolic execution has been described in [22]. Although

heavyweight in terms of required system modifications, symbolic execution is

promising fully automated dynamic analysis as it helps identifying input values

for relevant test cases.

Fraunhofer AISEC

App-Ray: User-driven and Fully Automated Android App Security

Assessment

6

2 Related work

Another approach to dynamically inspect apps is to observe their behavior at

runtime, i.e., their inter-process communication and file access, but without ex-

plicitly tracing data flows as proposed in TaintDroid. Here, various authors have

described different approaches (c.f [8, 25, 29, 30, 10]). However, applying be-

havior based inspection for a fully automated analysis is quite difficult. It requires

a comprehensive data set based on interaction with the GUI to learn legitimate

behavior and detect illegitimate apps.

While dynamic analysis is well suited to identify actual vulnerabilities and data

leaks as they occur, static analysis aims at identifying possible flaws by inspecting

the application without running it.

Considering static analysis, one early approach inspects the set of permissions

required by an Android app and checks whether it contains critical combinations

[16]. [14] investigates whether apps’ permissions exceed those typically required

for a specific type of application. More advanced approaches create call graphs

(interprocedural) and control flow graphs (intraprocedural) and try to extract in-

formation about information flows and critical code patterns from it. In general,

three frameworks for static code analysis are worth mentioning: Soot, Andro-

guard, and Wala. Soot [23] is a framework for static analysis of Java bytecode,

featuring a conversion of bytecode into four different representations at different

abstraction levels. As one of the most comprehensive frameworks, it allows to im-

plement custom analysis through various extension points. While Soot has been

designed to operate on Java bytecode, extensions to support instrumentation of

dex bytecode have been published recently [6]. Soot is relatively mature and its

recent extensions for dex bytecode look promising, but its feature-richness comes

at a cost in terms of complexity and overhead. In contrast to Soot, Androguard

[13] focuses specifically on Android and operates directly on dex bytecode, skip-

ping any error-prone translations to higher-level languages. It is thus leaner and

can be extended by directly modifying its source code. Wala [3] is another static

analysis framework which has originally been created for Java, similar to Soot. It

provides the basis for AndroidLeaks [18], a tool to identify data leaks in Android

applications. In contrast to our approach, the detection, i.e., the definition of

data leaks, is not configurable. Static analysis is also deployed in [19] and [11] to

detect capability leak vulnerabilities which can lead to so-called confused deputy

attacks.

As static and dynamic analysis are complementary, combining both approaches

is an obvious improvement. ProfileDroid [28] applies both approaches in order

to automatically create profiles of apps, however without searching for security-

relevant flaws, as we do. RiskRanker [20] is similar to our approach in that it

identifies potential security flaws in apps by combining different detection mech-

anisms, but similar to the approach in [7] it does not consider user-specific secu-

rity requirements to check for.

Fraunhofer AISEC

App-Ray: User-driven and Fully Automated Android App Security

Assessment

7

3 Framework design

The design goal of App-Ray is to create an extensible framework for a fully au-

tomated and user-driven security inspection of Android apps. The framework’s

components serve the following purposes:

• Specifying and refining security-related user requirements,

• orchestrating different analysis modules, and

• evaluating the results according to the previously defined requirements.

The two main challenges of the framework design are (1) the mapping of high-

level security goals to specific detection rules and (2) automated orchestration of

static and dynamic analysis components.

When testing an application, users simply choose a so-called protection profile,

i.e., a set of security requirements to check the application against. The frame-

work then breaks these requirements down to specific analysis tasks. This is done

by the core component of the framework, the analyzer. The actual analysis func-

tionality is implemented by detection modules which are dynamically added to

the framework if they are needed to assess a certain requirement. Each detec-

tion module has to provide an interface for configuring and executing its analysis.

Having derived the configuration values for all detectors involved in a test case,

the analyzer puts all detectors in a scheduling list and sets them up by calling

their configuration method. After that, the analyzer runs the analysis tasks by

invoking the execute method of the previously configured detectors.

Detectors are first scheduled in phases by their type, referring either to meta

data analysis, static analysis, or dynamic analysis. The results of each phase are

collected in a common data structure and passed on to the following detection

modules enabling subsequent detectors to use the results of previous ones.

Each phase is described separately in the following subsections. Furthermore, the

integration of App-Ray into the threat assessment process is presented in Section

3.6.

3.1 Meta data analysis

The meta data analysis collects information about the app, such as the contained

files, native libraries, as well as information from the AndroidManifest.xml

file. Here, security relevant information is gained from the set of required permis-

sions, entry points to the application in form of activities, content providers, and

Fraunhofer AISEC

App-Ray: User-driven and Fully Automated Android App Security

Assessment

8

3 Framework design

services. In addition to that, external services, which have been integrated into

App-Ray, such as virustotal [2] for checking the app for known exploit signatures,

are invoked and their return data is collected. Meta data analysis serves as an

efficient way to get first insights into an app and to collect information paving

the way for more detailed, subsequent inspection techniques.

3.2 Static analysis

In a next step, detectors for static analysis are invoked. Here, the actual dex byte-

code of the application is inspected to detect patterns indicating malicious or vul-

nerable code. At this stage, detectors gather various information about the app,

such as contained classes and methods, call graphs and data flow graphs, imple-

mented interfaces, etc. Based on this information, App-Ray statically searches

for potential information leaks, i.e., unwanted data flows sending private in-

formation (location, contact data, etc.) to untrusted APIs (sockets, browser in-

tents, etc.). Other examples for potentially malicious code comprise attempts

to place tapjacking attacks by means of fullscreen enlarged toast messages, at-

tempts to record touch events via transparent SYSTEM_ALERT windows, as

well as any attempt to invoke suspicious files, such as su (superuser), busybox

(utilities), /dev/input/event* (touch events), /dev/input/fb (frame-

buffer), and others. In particular, one test has proven highly relevant in prac-

tice: to check how the interface javax.net.ssl.TrustManager is im-

plemented [17]. On the one hand, this is required for certificate pinning, i.e., an

improvement of the certificate verification relying on Android’s built-in CAs. On

the other hand, however, the default TrustManager is often overwritten to simply

eliminate certificate checks, thus leaving the communication open to Man-in-the-

Middle attacks. App-Ray checks for such cases by inspecting the bytecode of any

implementation of the TrustManager interface to distinguish whether it is a cer-

tificate pinning or a “void” TrustManager implementation. Practical experience

with our prototype strongly confirms the findings of [17], stating a significant

amount of Android application are prone to Man-in-the-Middle attacks due to

intentionally overwritten TrustManagers.

It is in the nature of static analysis that these findings may be inaccurate, and

produce false positive or false negatives. False positives can occur, e.g., if a GUI

with a transparent full screen SYSTEM_ALERT window is actually required for

certain interactions. False negatives may result from attack patterns which have

not been anticipated and thus are not checked for, or if applications circumvent

detection, e.g., by constructing malicious code dynamically at run time.

3.3 Dynamic analysis

To improve detection capabilities, App-Ray adds a dynamic analysis step in which

the application is executed within an emulated environment. Here, we inspect

Fraunhofer AISEC

App-Ray: User-driven and Fully Automated Android App Security

Assessment

9

3 Framework design

the runtime behavior of the application and validate potential leaks previously

identified by the static analysis. Also, checks for further information are run,

including: capturing network traffic and filtering for potential privacy breaches,

user tracking, monitoring file access, and tracking information flows with dy-

namic taint analysis, as described in [27]. One challenge in dynamic analysis is

to drive an application down relevant execution paths to cover all security-critical

executions paths. App-Ray allows to record and replay user inputs to automat-

ically simulate the execution of an app. Having applied this record and replay

technique within our prototype to a variety of apps makes us confident that this

approach is applicable to discover flaws in the applications. However, we ac-

knowledge that symbolic execution depicts a solution to capture all possible ex-

ecution paths from which input data for automated test cases could be derived.

Of course, symbolic execution comes with its own drawbacks and challenges not

to be discussed within this paper. Nevertheless, App-Ray supports the integra-

tion of such techniques and they will be part of our future work on automated

security tests for Android.

3.4 Combination of static and dynamic tests

So far, meta data analysis, static analysis and dynamic analysis have been applied

separately, only interacting via a common data structure, which passes results

between detection modules. However, App-Ray also supports dependencies be-

tween detectors, thereby enabling a combination of static and dynamic analysis

techniques which leads to increased detection rates and less false positives. As

each detector has access to the analyzer’s scheduling queue, it is possible for one

detector to invoke another one and to continue working on its provided infor-

mation. For instance, during the static analysis, a detector might collect all class

names and methods present in the code. This can easily be done by inspecting

the dex bytecode, however, as soon as classes are loaded via reflection, e.g., via

Class.forName("classname"), static analysis comes to its end, espe-

cially when classes are loaded from a remote location. In this case, the static

analysis detection module can schedule a dynamic analysis module providing all

remote data, wait for it to finish its execution and then retrieve the loaded class

from the dynamic detector’s result data.

3.5 Evaluation of the analysis

One goal of App-Ray is to support automated tests for user-specified security re-

quirements. Hence, it is not possible to hardcode the evaluation of the previously

collected raw data from the detectors, but rather a flexible, rule-based approach

is necessary. Rules are defined as boolean expressions over predicates of the

attributes which are collected during the analysis. Attributes may thus contain

information such as method names, strings, decompiled source code, data flows,

Fraunhofer AISEC

App-Ray: User-driven and Fully Automated Android App Security

Assessment

10

3 Framework design

etc. Predicates are functions which take attributes as input and return a boolean

value. They can be registered in the framework to support various evaluations,

as shown by the following exemplary rule, using a trivialImpl predicate to

check for flawed TLS implementations, and a implClasses function which

returns all used classes that use the given interface. So, a (simplified) rule may

look as follows:

TLSFlaw = trivialImpl(implClasses(HostnameVerifier))

∨trivialImpl(implClasses(X509TrustManager))

∨in(AllowAllHostnameVerifier, usedClasses)

This rule checks all classes implementing the HostnameVerifier or X509TrustManager

interface for a flawed TLS implementation, or if the AllowAllHostnameVerifier

class is used for TLS hostname verification.

3.6 Integration into existing threat assessment processes

App-Ray configures detection modules according to user-specific security require-

ments and thus returns user-specific reports. It is suitable to be embedded in

threat assessment processes executed by security officers or administrators re-

sponsible for distributing apps to a user group, e.g. via an enterprise market. In

the following, we describe the process of deriving user-specific security require-

ments and using them to configure detection modules. Note that eliciting secu-

rity requirement is a process that requires domain specific knowledge, usually at

an expert level, which can be tool-supported but is hard to automate. However,

the process of security requirement elicitation itself is not in focus of App-Ray.

In a typical first step of threat analysis, assets of the mobile platform are analyzed.

They are defined by the user and may relate to the result of a certain usage con-

text the device is intended to work in or to an user-specific app to be deployed

on the device. To exemplify our approach, it is assumed that a user wants to in-

stall a banking app on her device to conduct financial transactions. User-specific

assets, such as sensitive data contained in the banking app, are refined by an

expert until a technical representation is achieved. In the context of the bank-

ing app, part of such a technical representation of assets is the implementation

of methods needed to encrypted the transaction data, authenticate the remote

banking server and ensure integrity of transaction data sent. After having ana-

lyzed a device’s assets, threats are derived. At first, the motivation of an attacker

has to be modeled by identifying high-level goals an attacker is persuading, such

as financial gains. In our example, an attacker may want to intercept financial

transactions and change the receiver’s account to rewire the transaction and thus

steal the funds to be transferred. From the motivation of an attacker, technical

targets are derived. In the banking app’s case, one technical target may be to

manipulate the communication for the financial transaction from the mobile de-

vice to the remote banking server. Then, ways to reach these targets, i.e., attack

Fraunhofer AISEC

App-Ray: User-driven and Fully Automated Android App Security

Assessment

11

3 Framework design

vectors are described. At this point, the results of the asset analysis pay off by

providing domain specific knowledge. In our banking app example, the attacker

may try to exploit a flaw in the app’s security model. One known vulnerability

which could allow the attacker to launch a man-in-the-middle attack may exist if

the banking app overwrites the javax.net.ssl.TrustManager, thereby

removing proper certificate and host name validation (c.f. [17]).

Based on the threat analysis, security requirements to test for can now be derived

from the attack vectors. By negating the attack vectors’ entry points, correspond-

ing security requirements are derived. Consider again the example of overwriting

the TrustManager with a void implementation: the entry point of the respective

attack vector is e.g., any class extending javax.net.ssl.TrustManager,

removing proper certificate and host name validation. Hence, the corresponding

security requirement reads “An app shall not overwrite the default TrustManager

with non-implemented methods”. Negating this requirement leads to a security

requirement which can directly be translated to the above mentioned evaluation

rule for App-Ray (see Section 3.5).

Figure ?? shows how the derived security requirements control the execution of

App-Ray and its detectors.

Fraunhofer AISEC

App-Ray: User-driven and Fully Automated Android App Security

Assessment

12

4 Prototype implementation

The App-Ray prototype supports user-specific requirements and is able to check

apps from various sources. Apps are analyzed statically and dynamically using

different security scanning techniques, e.g., using TaintDroid [15], Androguard

[13], and information directly available from the application file as explained in

Section 3.

All dynamic tests are executed in a virtual environment where apps are started

and observed for several seconds. As already mentioned in Section 3.3, App-

Ray supports scripting of simulated user interactions with an app, for further

implementation details please refer to [27]. Generally, apps need different user

input ranging from simple clicks to more difficult tasks, such as solving a level in a

game. Since our tests presented hereafter focus on the feasibility of automating

user-specific security scanning, the record and replay capabilities are disabled for

these tests. To generate comparable output from the prototype for our tests, all

apps are started and operated in the same way. Starting an app and observing

the behavior for several seconds can already provide meaningful insights into

an application, e.g., about the network traffic during start up. However, we

acknowledge that results of certain dynamic techniques, e.g., behavior-based

analysis, may benefit from the deployment of record and replay techniques to

generate and execute user input.

Our prototype combines different scanning techniques by orchestrating them in

the analyzer component according to the requirement specific protection profile.

Results returned by the detectors are converted into a common data format and

passed on to the evaluation component where the results are matched against

the protection profile. However, to show feasibility of App-Ray, it is sufficient to

summarize the results of all scanning techniques and provide a brief explanation

for each finding.

4.1 Practical Application

Evaluating the feasibility of App-Ray to configure detection techniques according

to high-level security goals, we selected privacy as a goal to start from. On this

basis, we derived security requirements of a fictional user as described in Section

3.6 and selected the following two user-specific protection profiles (non-technical

description) as part of the test set:

• Does the app use TLS, and if so, is it implemented correctly?

Fraunhofer AISEC

App-Ray: User-driven and Fully Automated Android App Security

Assessment

13

4 Prototype implementation

• Does the app include tracking or advertisement libraries whilst having ac-

cess to sensitive information of the user?

These profiles are exemplary and App-Ray is not limited to them but rather can be

configured to cover many others. Each protection profile is mapped to security

requirements whose results are categorized as either OK or NOK (Not OK):

TLS usage: If an app (or parts of an app) communicates over HTTP, this is catego-

rized as NOK, if all monitored communication is over HTTPS as OK.

TLS implementation flaws: Apps (or included libraries) can implement their own

certificate verification which can either be non-existent or accept all certificates

without any validation. Both cases result in NOK. If no custom certificate verifi-

cation is implemented or the certification validation is implemented correctly or

the certificate validation is not removed, it is categorized as OK.

Profiling: Apps can contain libraries for profiling users or collecting crash reports

sending out private information to third-party services. If the app can also read

sensitive information, i.e., IMEI, IMSI, telephone number, or location, this can

indicate a privacy violation (NOK). If the app does not have access to sensitive

information or does not contain libraries for profiling, it is categorized as OK.

Advertisement: Similar to tracking, apps can use advertisement libraries and have

access to sensitive information. Since this can be a problem if the ad library uses

sensitive information (e.g., as shown in [26]), this finding is categorized as NOK.

If the app does not have access to sensitive information or does not contain

advertisement libraries, it is categorized as OK.

These four security requirements result in four different evaluation rules. The rule

for the TLS implementation flaw can be found in Section 3.5. The evaluation rule

for Advertisement looks as follows:

Adv = (in (permissions, INET) ∧ in(libs, adLibx))

∨in (capturedTraffic, adHosty)

The remaining two evaluation rules are similar to the two depicted ones and are

omitted for the sake of brevity.

4.2 Results

50 popular, free apps available at Google Play have been tested, selected from

the top 10 of the categories business, communication, productivity, social, and

tools (January 2013). The scans were executed on a current PC (Core i5@3.3GHz,

8GB RAM, Ubuntu 12.04 64 bit) and took between 50 s and 980s (depending

on the complexity and size of the app), with a mean of 185 s (σ = 171) and a

total runtime of 155 min. The results are summarized in Table 4.1.

Fraunhofer AISEC

App-Ray: User-driven and Fully Automated Android App Security

Assessment

14

4 Prototype implementation

Requirement NOK OK

TLS usage 31/50 19/50

TLS implementation flaws 26/50 24/50

Profiling 29/50 21/50

Advertisement 24/50 26/50

Table 4.1: Test results

These results were reviewed manually, e.g., for TLS implementation flaws, the

application’s implementation of the certificate verification (if such a verification

exists) was manually inspected to verify App-Ray’s findings. The results show

that our prototype is capable of scanning selected apps according to previously

elicited, user-specific security requirements. On the basis of these results, the

user is thus able to assess apps’ security without manual inspection. App-Ray

therefore provides meaningful information about an app’s security and can serve

as an information basis for an administrator who can, in turn, recommend apps

or further investigate results not compliant with her requirements.

The test’s results show that the scanned apps often contain severe security issues,

for instance, more than half of the scanned apps contain profiling libraries and

have access to sensitive information of the device.

Fraunhofer AISEC

App-Ray: User-driven and Fully Automated Android App Security

Assessment

15

5 Conclusion

In this paper, we presented an user-driven and fully automated Android app secu-

rity assessment framework, called App-Ray. Our framework combines static and

dynamic scanning techniques and analyzes apps according to user-specific secu-

rity requirements, thereby providing lightweight integration into existing threat

and risk assessment processes. A user can scan apps according to specific pro-

tection profiles and receives detailed results tailored to these requirements. As

the user does not have to configure the scanning techniques, our framework is

well suited for users without profound knowledge in, e.g., reverse engineering

or bytecode analysis.

A practical application of the developed prototype with 50 popular, free apps

from Google Play showed that more than half of the apps do not comply with a

selected set of user-specific requirements representing a user’s privacy.

In our future work, we plan to extend the analysis capabilities of App-Ray by

further techniques, based on bytecode instrumentation and symbolic execution.

We also intend to extend the catalogue of predicates and attributes of our evalua-

tion rules. Thereby, we envision to better address the challenge of automatically

generating artificial, but meaningful simulated inputs to the application under

test. Studies on specific types of vulnerabilities and their distribution across the

different markets will follow.

Fraunhofer AISEC

App-Ray: User-driven and Fully Automated Android App Security

Assessment

16

Bibliography

[1] droidbox – Android Application Sandbox. http://code.google.

com/p/droidbox/, accessed 10th Apr. 2013. 6

[2] VirusTotal. http://www.virustotal.com/, accessed 10th Apr.

2013. 9

[3] WALA – T.J. Watson Libraries for Analysis. http://wala.sourceforge.net/, ac-

cessed 10th Apr. 2013. 7

[4] android-apktool – A tool for reverse engineering Android apk files. http:

//code.google.com/p/android-apktool/, accessed 29th Jan.

2013. 6

[5] smali – An assembler disassembler for Androids dex format. http://

code.google.com/p/smali/, accessed 29th Jan. 2013. 6

[6] A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus. Dexpler: converting an-

droid dalvik bytecode to jimple for static analysis with soot. In Proceedings

of the ACM SIGPLAN International Workshop on State of the Art in Java

Program analysis, SOAP ’12, pages 27–38, New York, NY, USA, 2012. ACM.

7

[7] L. Batyuk, M. Herpich, S. Camtepe, K. Raddatz, A. Schmidt, and S. Albayrak.

Using static analysis for automatic assessment and mitigation of unwanted

and malicious activities within android applications. In Malicious and Un-

wanted Software (MALWARE), pages 66 –72, oct. 2011. 7

[8] A. Bauer, J.-C. Kuster, and G. Vegliach. Runtime verification meets android

security. In NASA Formal Methods Symposium (NFM’12), pages 174–180,

Norfolk, Virginia/USA, April 2012. Springer-Verlag. 7

[9] T. Blaesing, L. Batyuk, A.-D. Schmidt, S. Camtepe, and S. Albayrak. An

Android Application Sandbox system for suspicious software detection. In

5th International Conference on Malicious and Unwanted Software (MAL-

WARE), pages 55–62, 2010. 6

[10] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani. Crowdroid: behavior-based

malware detection system for Android. In Proceedings of the 1st ACM

workshop on Security and privacy in smartphones and mobile device (SPSM),

pages 15–26. ACM, 2011. 7

Fraunhofer AISEC

App-Ray: User-driven and Fully Automated Android App Security

Assessment

17

http://code.google.com/p/droidbox/
http://code.google.com/p/droidbox/
http://www.virustotal.com/
http://code.google.com/p/android-apktool/
http://code.google.com/p/android-apktool/
http://code.google.com/p/smali/
http://code.google.com/p/smali/

Bibliography

[11] P. P. Chan, L. C. Hui, and S. M. Yiu. DroidChecker: analyzing android ap-

plications for capability leak. In Proceedings of the 5th ACM conference

on Security and Privacy in Wireless and Mobile Networks (WISEC), pages

125–136. ACM, 2012. 7

[12] V. Chipounov, V. Kuznetsov, and G. Candea. S2e: a platform for in-vivo

multi-path analysis of software systems. SIGPLAN Not., 46(3):265–278, Mar.

2011. 6

[13] A. Desnos and G. Gueguen. New "open source" step in android application

analysis. In 10th annual PacSec conference, Nov. 2012. 7, 13

[14] F. Di Cerbo, A. Girardello, F. Michahelles, and S. Voronkova. Detection of

malicious applications on android os. In Proceedings of the 4th international

conference on Computational forensics, IWCF’10, pages 138–149, Berlin,

Heidelberg, 2011. Springer-Verlag. 7

[15] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N.

Sheth. Taintdroid: an information-flow tracking system for realtime privacy

monitoring on smartphones. In 9th USENIX conference on Operating sys-

tems design and implementation, 2010. 6, 13

[16] W. Enck, M. Ongtang, and P. McDaniel. On lightweight mobile phone ap-

plication certification. In 16th ACM conference on Computer and commu-

nications security (CCS), pages 235–245. ACM, 2009. 7

[17] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and M. Smith.

Why eve and mallory love android: an analysis of android ssl (in)security. In

Proceedings of the 2012 ACM conference on Computer and communica-

tions security, CCS ’12, pages 50–61, New York, NY, USA, 2012. ACM. 9,

12

[18] C. Gibler, J. Crussell, J. Erickson, and H. Chen. Androidleaks: Automatically

detecting potential privacy leaks in android applications on a large scale. In

5th international conference on Trust and Trustworthy Computing (TRUST),

2012. 7

[19] M. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic detection of capability

leaks in stock Android smartphones. In Proceedings of the 19th Network

and Distributed System Security Symposium (NDSS), Feb. 2012. 7

[20] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang. Riskranker: scalable

and accurate zero-day android malware detection. In 10th international

conference on Mobile systems, applications, and services (MobiSYS), 2012.

7

[21] J. Jeon, K. K. Micinski, and J. S. Foster. Symdroid: Symbolic execution for

dalvik bytecode. Technical report, University of Maryland, 2012. 6

[22] A. Kirchner. Data leak detection in smartphone applications. Master thesis,

Technical University Vienna, Chair for Computer Science, Nov. 2011. 6

Fraunhofer AISEC

App-Ray: User-driven and Fully Automated Android App Security

Assessment

18

Bibliography

[23] P. Lam, E. Bodden, O. Lhotak, and L. Hendren. The soot framework for java

program analysis: a retrospective. In CETUS Users and Compiler Infrastruc-

ture Workshop, Oct. 2011. 7

[24] A. Saracino, F. Martinelli, D. Sgandurra, and G. Dini. Madam: a multi-level

anomaly detector for android malware. In Int’l Conf. Mathematical Meth-

ods, Models, and Architectures for Computer Network Security (MMM-

ACNS), 2012. 6

[25] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss. Andromaly: a

behavioral malware detection framework for android devices. Journal of

Intelligent Information Systems, 38(1):161–190, 2011. 7

[26] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen. Investigating user

privacy in android ad libraries. IEEE Mobile Security Technologies (MoST),

2012. 14

[27] D. Titze, P. Stephanow, and J. Schütte. A configurable and extensible secu-

rity service architecture for smartphones. Int’l Symposium on Frontiers of

Information Systems and Network Applications (FINA), 2013. 10, 13

[28] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos. Profiledroid: Multi-layer

profiling of android applications. In 18th Annual International Conference

on Mobile Computing and Networking (MobiCom), 2012. 7

[29] L. Xie, X. Zhang, J.-P. Seifert, and S. Zhu. pbmds: a behavior-based malware

detection system for cellphone devices. In Proceedings of the third ACM

conference on Wireless network security, WiSec ’10, pages 37–48, New

York, NY, USA, 2010. ACM. 7

[30] M. Zhao, T. Zhang, F. Ge, and Z. Yuan. Robotdroid: A lightweight mal-

ware detection framework on smartphones. Journal of Networks (NoW),

7(4):715–722, 2012. 7

Fraunhofer AISEC

App-Ray: User-driven and Fully Automated Android App Security

Assessment

19

	1 Introduction
	2 Related work
	3 Framework design
	3.1 Meta data analysis
	3.2 Static analysis
	3.3 Dynamic analysis
	3.4 Combination of static and dynamic tests
	3.5 Evaluation of the analysis
	3.6 Integration into existing threat assessment processes

	4 Prototype implementation
	4.1 Practical Application
	4.2 Results

	5 Conclusion

