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Abstract
Deepfakes are synthetically generated media often devised with
malicious intent. They have become increasingly more con-
vincing with large training datasets advanced neural networks.
These fakes are readily being misused for slander, misinforma-
tion and fraud. For this reason, intensive research for develop-
ing countermeasures is also expanding. However, recent work
is almost exclusively limited to deepfake detection - predicting
if audio is real or fake. This is despite the fact that attribution
(who created which fake?) is an essential building block of a
larger defense strategy, as practiced in the field of cybersecurity
for a long time. This paper considers the problem of deepfake
attacker attribution in the domain of audio. We present several
methods for creating attacker signatures using low-level acous-
tic descriptors and machine learning embeddings. We show
that speech signal features are inadequate for characterizing at-
tacker signatures. However, we also demonstrate that embed-
dings from a recurrent neural network can successfully char-
acterize attacks from both known and unknown attackers. Our
attack signature embeddings result in distinct clusters, both for
seen and unseen audio deepfakes. We show that these embed-
dings can be used in downstream-tasks to high-effect, scoring
97.10% accuracy in attacker-id classification.
Index Terms: audio spoofing, deepfake, clustering, embedding

1. Introduction
Deepfakes are synthetically generated media content often cre-
ated and delivered with malicious intent. Very large datasets,
increasing compute power, and the use of advanced neural net-
works have made it possible to create very convincing deep-
fakes. Deepfakes are already being misused in everyday life
for slander [1], fake news [2] and even financial fraud [3]. For
this reason, the detection of deepfakes (or spoofs) is a major
subject of current research, both in the domain of video and
audio. Especially in the domain of audio, most research is cur-
rently focused only on the detection of fake voice recordings.
For example, the popular ASVspoof Challenge [4,5], only con-
siders detection tasks for audio deepfakes but does not handle
attacker attribution. Attribution is more challenging than detec-
tion since the latter is essentially a binary classification prob-
lem (i.e., speech is either real or fake), but attribution requires a
much finer gradation than ‘real or fake’. In this paper we present
work on attacker attribution using a technique that allows us to
develop special signatures that represent particular attackers.

Working on attacker attribution is important because it al-
lows a better understanding of the threat landscape. In cyberse-
curity, for example, attribution of attacks is already an important
part of threat mitigation strategy [6–10]. Our paper deals with
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the attribution of audio deepfakes through the creation of at-
tacker signatures and we make three main contributions. (1) We
introduce and evaluate a signature based on 16 low-level acous-
tic features such as pitch, jitter, etc. with respect to how well
the signature performs in characterising audio deepfake attack-
ers.We show that these simpler features have only limited appli-
cability. (2) We show that neural embedding signatures can suc-
cessfully cluster deepfake speech audio with respect to attacker
ID from a labeled corpus. We evaluate the neural embeddings
on a large audio deepfake corpus and show that the resulting
embeddings allow simple downstream models to achieve high
classification accuracy. (3) We provide insight into how our ex-
periments could be used for developing cybersecurity tools.

2. Related Work
The term deepfake originated in 2017 from a Reddit user who
posted face-swapped pornographic videos [11]. Since then,
media content forgery using machine learning has developed
rapidlywhich in turn motivated a flurry of research on deepfake
detection [12, 13] and corresponding challenges such as Face-
book’s Deepfake Detection Challenge [14]. In the domain of
audio and voice, which is the focus of this paper, these fakes are
commonly referred to as ‘spoofs’ [4, 5].

Audio spoofs can be created in several ways, and one such
way involves using text-to-speech (TTS) synthesis models such
as Tacotron [15] combined with a vocoder such as Griffin-
Lim [16] or neural vocoders such as WaveNet [17]. With either
of these vocoder methods, the spectrogram is inverted and a raw
waveform of speech can be obtained. Tacotron and its successor
Tacotron 2 [18] have triggered considerable follow-up research,
which optimizes either synthesis quality [19], minimizes infer-
ence time [20] or allows for controllable prosody [21]. How-
ever, TTS synthesis technology can also be used to create deep-
fakes of a voice by cloning a person’s voice and controlling
what they say without consent.

The threat that deepfakes pose to society has triggered re-
search in the field of audio spoof detection and led to the
establishment of a large biennial challenge called the “Au-
tomatic Speaker Verification and Spoofing Countermeasures”
(ASVspoof) series [4, 5]. In this challenge, the organizers pro-
vide large datasets which contain both authentic speech (i.e.
spoken by a real human) and spoofed speech (i.e. fake speech
from TTS synthesis, voice conversion, or neural vocoder sys-
tems). To take the progress of TTS synthesis and voice con-
version into account, new benchmark datasets are released ev-
ery other year (c.f. 4.1). This challenge has incited many pa-
pers which have advanced state-of-the-art in audio spoof de-
tection [22–25]. However, the community has perhaps been
too optimistic about the detection rate of new audio spoofs
not included in the training dataset, as it has been shown that
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some datasets contain artifacts that make classification tasks
trivial [26] due to the amount of silence padding in a waveform.

Recording environment signatures were first created for
modeling physical attack characteristics in the ASVspoof 2019
Challenge [27]. While the environment embeddings did help
with attack detection, they did not identify particular types of
attacks. A related problem is attacker attribution, i.e. answer-
ing the question: ’Who created this audio spoof?’. Attribution
requires the creation of attacker signatures which remain con-
stant over all of the attacker’s audio spoofs. In this case, an
attacker is identified by the specific speech synthesis setup they
use which includes not only the choice of architecture but train-
ing data and hyperparameters as well. In the domain of video
deepfakes, there is very little prior work on attribution [28, 29].
In the domain of audio deepfakes the work of [30] uses clus-
tering [30] for spoof detection, but there is no prior work on
attacker attribution.

3. Attacker Signatures
Recall that learning attacker signatures is a different technical
problem than detecting deepfakes. The primary difference in-
volves the assumption that the audio is already known to be a
deepfake and therefore the task is to attribute each deepfake to
the system of origin (vocoder, TTS system, voice conversion
system, etc). This section describes two main approaches for
creating attacker signatures: extracting low-level signal features
and learning embeddings from a neural network.

We define the attacker signatures as follows: For attackers
A0, A1, ... and raw audio waveforms W0,W1, ..., we are in-
terested in a a signature f s.t. f(Wl) = f(Wk) if and only
if Wl,Wk originate from the same attacker. We can relax the
problem and write f(Wl) ≈ f(Wk). This requires a notion of
distance in f(W )-space, for example L2 or cosine similarity.
Note that we use the notation of A0 to indicate bonafide speech
(i.e. authentic, non-spoofed audio waveforms) since this nota-
tion follows a similar pattern as the labeled ASVSpoof dataset
that we used in our experiments.

3.1. Low-Level Features

A natural first approach for creating attacker signatures is using
features that can be computed directly from raw audio. Related
work has shown that even simple features, such as the length of
audio silence, can suffice to verify authenticity [26]. We extract
the following low-level signal features from raw audio using
Parselmouth [31] with Praat [32] and Pydub [33]. The ex-
tracted features are combined into 16-dimensional vectors and
used in our analysis for clustering and classifying attackers.

Fundamental frequency. The mean, minimum and maxi-
mum F0 (as extracted by Parselmouth), including the standard
deviation and mean absolute slope (MAS). The pitch MAS is
the frequency of vibration of the sound waves. All pitch val-
ues were calculated from the utterance-level waveform. This
feature was chosen because it is well-known that machine-
generated speech often lacks naturalness for prosody with vari-
ation among different types of systems [34].

Distortion and shimmer. We used jitter (i.e. time distor-
tions from the digital audio signal), and shimmer, where shim-
mer is the average absolute difference between the amplitudes
of consecutive periods, divided by the average amplitude [35].
These two types of features are interesting because they can
capture instant-to-instant changes in frequency and amplitude
of the signal, and are known to capture some differences be-

tween biological systems and machine systems [34].
Speaker gender. This is a binary feature for male vs. fe-

male gender of the speaker in the audio file. While this feature
may seem naive, TTS pre-training or warm-up is often based on
single-speaker data such as the highly popular female speaker
in the LJSpeech Dataset [36]. The use of single-speaker data for
pre-training could potentially cause bias in speech synthesis.

Duration and loudness. The duration feature that we used
was simply the duration of the audio signal on a per-file ba-
sis. The loudness in dBFS (db relative to the maximum possi-
ble loudness). A square wave at maximum amplitude will be
roughly 0 dBFS (maximum loudness) [37].

Signal amplitude, power, and energy. For amplitude, we
used the highest amplitude of the signal, with and without the
conversion into dBFS (which specifies the value relative to the
highest possible amplitude). We also calculated the power and
energy over the entire audio file.

Noise ratio. The mean and standard deviation of a short-
term Harmonic to Noise Ratio (HNR) analysis. HNR is known
to be predictive of audio deepfakes [38].

3.2. Neural Embeddings

Alternatively, we can learn the attacker signature. We design
a neural network fθ which maps a waveform W to an attacker
signature fθ(W ). Following the architecture presented in [39],
this network consists of a stack of three recurrent layers. Each
layer in the stack consists of an LSTM with 768 neurons, whose
output is fed into a 256-dimensional dense layer (called pro-
jection layer). The output of the network is an embedding in
fθ(W ) ∈ R256. The model is trained via the Angular Prototyp-
ical loss [40], which is a form of cosine similarity loss.

4. Experimental Results
4.1. Evaluation Data

We use the ASVspoof 2019 dataset [4] to evaluate our attacker
signatures that were proposed in Section 3. Specifically, we use
the Logical Access (LA) part of ASVspoof 2019, which we ab-
breviate in this paper as: ASV19. It consists of speech audio
files which are either bonafide (i.e. authentic recordings of hu-
man speech) or spoofed audio (i.e. synthesized or fake audio).
The fake audio originates from 19 different attackers, labeled
A1 - A19. For each attacker, there are 4914 audio recordings,
while there are 7355 bonafide samples. ASV19 was the official
dataset for the ASVspoof 2019 challenge [4], which focused
on spoof detection, i.e. binary classification of authenticity. A
significant number of related work have used ASV19 data to
develop detection algorithms [22–25].

4.2. Evaluation Metric

To evaluate the quality of our clustering given a labeled dataset,
we compute the average class-conditional variance1 as follows
in Equation 1 and Equation 2:

varC(X) =
1

|C|
∑
c∈C

var(X, y = c) (1)

where

var(X, y = c) =
1

Nc − 1

Nc∑
i=1

(
xc − x(i)

c

)2
(2)

1we estimate both mean and variance from a sample distribution and
thus use Bessel-correction Nc − 1 in the denominator.



Figure 1: Clusters formed by our 16-dimensional embeddings
from low-level signal features, using a 2D UMAP projection of
the embedding space. The color of the data points indicates the
different attacker ID labels.

Figure 2: The values of the jitter static features, shown as box
plot per attack ID. While it is somewhat indicative of the class,
the domain overlaps for many classes, which limits its suitabil-
ity for attacker signature creation.

describes the class-conditional variance and xc =
∑Nc
i=1 x

(i)
c

is the centroid of class c; with Nc instances x
(i)
c belonging to

class c. Intuitively, this describes how closely packed the clus-
ters are: the smaller varC , the better the clustering w.r.t. to
the target classes C. Note that this metric is sensitive to the
scale of the data, which is why we consistently apply standard-
normalization first. Lower values for class-conditional variance
are indicative of better clustering.

4.3. Evaluation of Low-Level Signal Features

Figure 1 shows how our 16-dimensional embeddings form clus-
ters when projected into a 2D space using UMAP. The attacker
ID labels are indicated by the colors of the data points. While
some of the attack types are grouped together, there is no clear
inter-label separation, and the clusters comprise many different
attack IDs. While the data seems to cluster locally, there is no
strong separation between the clusters. Rather, single clusters
comprise multiple labels. Thus the conventional features are
limited in their applicability to attacker signature identification.

We can verify this numerically by computing the average
distance of each instance to its class centroid, as shown in
Table 1. For reference, we have also included a box-plot of
our strongest low-level signal feature, jitter, which achieves a
conditional-class variance of 0.53. The jitter feature is some-

Low-Level Class-Conditional
Signal Feature Variance (Avg.)

duration 0.97
energy 0.93
gender 0.69
HNR mean 0.61
HNR std 0.71
jitter 0.53
loudness 0.67
max loudness 1.21
peak amplitude 1.21
pitch MAS 0.72
pitch max 0.85
pitch mean 0.98
pitch min 0.87
pitch std 0.80
power 0.73
shimmer 0.73

all 0.83

Table 1: Evaluating the resulting clusters from our 16-
dimensional embeddings created from low-level signal features.
The average class-conditional variance is reported as averaged
over all attack IDs. Lower values would indicate that a feature
contributes to better clustering of attack IDs.

what indicative of attacker ID, as shown in Figure 2. To com-
pute the values reported in Table 1, we first compute the class-
conditional variance and then compute the average over all at-
tack IDs. All features are standard-normalized. We see that the
class-conditional variance is high. The usability of these fea-
tures for attack signature clustering is very limited and the class-
conditional values explain why clustering was not achieved in
Figure 1. The corresponding boxplot in Figure 2 shows that
while jitter is somewhat indicative of attacker ID, the ranges of
values for jitter overlap significantly. Of all the low-level fea-
tures, jitter was the best one based on our analysis. We conclude
that our selected low-level features are of limited usefulness.
Note that the majority of the features in Table 1 are even less
useful than jitter. Overall, the class conditional variance is 0.83
on average, which is much worse than jitter at 0.53.

Another method that we use to evaluate the features is
through supervised classification. We train a classifier to pre-
dict the attacker ID, given the 16-dimensional feature vector.
We choose a simple feed-forward network with 3 hidden layers,
50 neurons per layer, ReLU activation [41], and learning rate of
0.001. We train on 90% of the ASV19 data while evaluating on
the other 10% as held-out test data. We achieve an accuracy of
56.96%, which is significantly better than random guessing (the
random baseline has 5% accuracy, given 20 different attacker
IDs), but inadequate still. We conclude that the low-level fea-
tures from Section 3.1 are not suitable for attacker signatures.

4.4. Evaluation of Neural Embeddings

We present our evaluation of neural embeddings for attacker
signature (c.f. Section 3.2) evaluated on the ASV19 dataset. We
evaluate two different scenarios: in-domain and out-of-domain.
We describe each scenario and present clustering results for
each one. We also describe how well the attack signature em-
beddings perform in a separate classification task. For the in-
domain scenario, we train a neural network to learn embeddings
using the training partition of the ASV19 dataset. Our network



Figure 3: In-domain evaluation of our neural attack signatures
on ASV19. All attacker types were seen during training.

Figure 4: Our-of-domain evaluation of our neural attack signa-
tures on ASV19. Four attackers were hld-out from training.

is trained on 90% of this partition and evaluated on the remain-
ing 10%. By treating this 10% as our test data, we are able to
evaluate our embeddings using new audio recordings from at-
tackers seen during training. For the out-of-domain scenario,
we select four randomly chosen attacker IDs (A02, A04 A012,
A14) and reserve all of their audio samples as a test set. We then
train on the remainder of the data. This allows us to evaluate
our ability to attribute unseen audio recordings from unknown
attackers, as we would expect in a real-world application such
as a tool for cybersecurity purposes.

The resulting clusterings for each scenario are shown in
Figure 3 and Figure 4. As expected, we observe that the in-
domain task seems easier than the out-of-domain task due to the
successful separation of the large number of clusters. Though
in both cases we obtain sensible clustering. Computation of the
average class-conditional variance yields 0.19 for the in-domain
task and 0.46 for the out-of-domain task. Both of these signifi-
cantly outperform the clustering evaluation from low-level sig-
nal features, which had an average class-conditional variance of
0.83. The out-of-domain scenario is more challenging, since
the audio file content and attackers are unseen during training.
Nevertheless, we obtain very clear clustering, indicating the our
neural embedding signatures can generalize beyond known at-
tacker IDs and may be usable in a real-world scenario.

Additionally, we evaluate the neural embeddings as a down-
stream classification task. We again create a simple a three-
layer feed-forward neural network with ReLU activation [41],
using 50 neurons per layer, and a learning rate of 0.001. The
model takes as input our previously computed neural embed-
dings as the attack signatures. We use our signatures as feature

Figure 5: Visualisation of the unlabeled ASV21 data via 2D
UMAP projection to cluster our neural attack signatures.

vectors while attempting to classify attack types. We train on
90% of the ASV19 data while evaluating on the other 10%.
Our simple classifier achieves a test accuracy of 97.10% for the
in-domain evaluation. The classification accuracy achieved by
our neural embedding attack signatures (97.10%) significantly
outperforms what we had achieved with our low-level signal
feature attack signatures (56.96%).

We applied our neural embedding attack signature tech-
nique to a completely held-out dataset, from the ASVspoof
2021 challenge (ASV21). It is similar to the ASV19 dataset
but introduces more samples, new attackers, and a variety of
codecs which blur the characteristics of spoofed audio that our
model trained on. The attacker labels have not yet been released
therefore we leave to future work an extensive evaluation once
the labels have been released. we can apply our ASV19-trained
model to the dataset and inspect the unlabeled clustering. This
is shown in fig. 5. We can see that our model succeeds in find-
ing various clusters, which indicates that our model generalizes
beyond the ASV19 dataset.

5. Conclusion and Future Work
In this paper we introduced two new methods for creating at-
tacker signatures to attribute spoofed audio to specific attack-
ers. We evaluated signatures from low-level signal features
and neural embeddings. We found that neural embeddings are
well-suited for this problem and perform better in clustering
and classification than low-level signal features. We have also
demonstrated how our methodology can be applied to a com-
pletely held-out dataset and we suggest future work to investi-
gate model adaptation once the labels have been released for the
ASV21 dataset. Our model produces distinct clusters, indicat-
ing that it has learned to generalize beyond the ASV19 dataset.
The neural embedding attack signatures are a very promising
avenue for future attacker attribution research.
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