
A Study on Hardware Attacks against 
Microcontrollers 



Document history 

Version Date Editor Description 

1.0 17.03.2023 Final Version 

Table 1: Document history 

Federal Office for Information Security 

P.O. Box 20 03 63 

53133 Bonn 

Internet: https://www.bsi.bund.de 

© Federal Office for Information Security 2021 



Acknowledgement 

Federal Office for Information Security 3 

Acknowledgement 

This report was authored by the Fraunhofer Institute for Applied and Integrated Security (AISEC) on behalf 

of the German Federal Office for Information Security (BSI). 



Table of Contents 

Federal Office for Information Security 4 

Table of Contents 

1 Introduction ............................................................................................................................................................................................ 6 

2 Market Analysis on the use of Microcontrollers .................................................................................................................... 7 

3 Hardware Attacks ............................................................................................................................................................................... 11 

3.1 Control Flow Manipulation Attacks ............................................................................................................................... 11 

3.1.1 Countermeasures ................................................................................................................................................................ 12 

3.1.2 Attack Proposal and Countermeasure Evaluation .............................................................................................. 13 

3.2 Side-Channel Attacks ............................................................................................................................................................. 14 

3.2.1 Countermeasures ................................................................................................................................................................ 15 

3.2.2 Attack Proposal and Countermeasure Evaluation .............................................................................................. 15 

3.3 Read-out Protection Bypass Attacks ............................................................................................................................... 18 

3.3.1 Countermeasures ................................................................................................................................................................ 20 

3.3.2 Attack Proposal and Countermeasure Evaluation .............................................................................................. 21 

4 Laboratory Evaluation ...................................................................................................................................................................... 23 

4.1 Flash Erase Suppression ........................................................................................................................................................ 23 

4.1.1 Laboratory setup and Results ........................................................................................................................................ 23 

4.1.2 Conclusion and Future Work ....................................................................................................................................... 26 

4.2 Compiler-based Fault Injection Protection ................................................................................................................. 27 

4.2.1 Attacking MCUboot’s RSA implementation .......................................................................................................... 27 

4.2.2 Compiler-based hardening of MCUboot ................................................................................................................. 29 

4.2.3 Laboratory Setup and Results ....................................................................................................................................... 31 

4.2.4 Conclusion and Future Work ....................................................................................................................................... 33 

5 Conclusion ............................................................................................................................................................................................. 35 

Bibliography .................................................................................................................................................................................................... 37



1 Introduction 

Federal Office for Information Security 5 

List of Abbreviations 

ADC Analog-digital converter 

AES Advanced encryption standard 

ANSSI Agence Nationale de la Sécurité des Systémes d’Information 

COTS Commercial off-the-shelf 

CPU Central processing unit 

CRC Cyclic redundancy check 

ECC Elliptic curve cryptography 

ECC Error correction code 

EM Electromagnetic 

EMFI Electromagnetic fault injection 

FCC Federal communications commission 

FIB Focused ion beam 

GPIO General-purpose input/output 

IoT Internet of things 

IP Intellectual property 

IR Intermediate representation 

ISA Instruction set architecture 

LFI Laser fault injection 

NDA Non-disclosure agreement 

OTA Over-the-air 

PC Program counter 

POS Point-of-sale 

ROP Return-oriented programming 

RSA Rivest-Shamir-Adleman 

SNR Signal noise ratio 

SRAM Static random-access memory 

TTM Time to market 

USB Universal Serial Bus 

UV Ultra-violet 

XOM Execute-only memory 



1 Introduction 

 

6  Federal Office for Information Security 

1 Introduction 

Microcontrollers are widely used in numerous applications such as robotics, medical devices, aerospace, and 

automotive. Concepts such as the internet of things (IoT) further increase their pervasiveness in areas within 

industrial and consumer products. Since microcontrollers are responsible for complex tasks they contain 

valuable intellectual property (IP) that could be of interest to competitors and are therefore worth 

protecting. Furthermore, microcontrollers can be found in sensitive applications such as access control 

systems. As a consequence, they contain credentials and other cryptographic secrets which make them an 

attractive target for adversaries. For that reason, the security of microcontrollers and their respective assets 

are of utmost importance for today’s applications. 

This security must be carefully evaluated. For one, threats known for other computer systems such as 

desktops and servers also apply to microcontrollers. Additionally, there is an attack type, which can be 

ignored in many cases for desktop and server platforms: the hardware attack. Due to their pervasiveness and 

accessibility, hardware attacks and their countermeasures must be taken into special consideration for 

microcontrollers. Other computing systems are less easy to access for adversaries, therefore hardware 

attacks are less relevant but not completely negligible. Despite restrictions, an attacker might gain access to 

the device or induce hardware attacks remotely. However, this report focuses on hardware attacks on 

accessible microcontrollers and does not further consider other computing systems. Hardware attacks are 

often not part of the threat model of microcontroller manufacturers, but nevertheless, these attacks are 

frequently reported and need to be addressed. Vulnerabilities on the hardware level allow the adversary to 

mount attacks, regardless of the application software. 

There exist security controllers with built-in protections against hardware attacks and satisfy certain 

assurance levels assessed by independent evaluation laboratories [2]. However, commercial off-the-shelf 

(COTS) microcontrollers are prevalent in security relevant IoT products. The reasons are manifold but in the 

end mostly price-driven. COTS devices are mostly cheaper and easier to acquire. In contrast to security 

controllers where usually a non-disclosure agreement (NDA) is required for detailed product information, 

COTS microcontrollers benefit from publicly available tools, documentation, and code which accelerates 

development and time to market (TTM). Finally, microcontroller manufacturers and product designers have 

limited awareness of potential threats through hardware attacks. Manufacturers are gradually starting to 

build countermeasures against hardware attacks into some of their product families. However, these devices 

only slowly find their way into products, while devices which are already deployed in the field remain 

vulnerable to this kind of attacks. Therefore, effective countermeasures, particularly those that can be 

retrofitted into existing devices are important for products already in circulation. 

This report is meant to create awareness for hardware attacks on critical infrastructure that is built upon 

COTS microcontrollers. After reading, both technical-proficient and non-proficient readers should be able 

to judge the threat posed by unprotected implementations . First, an overview of COTS microcontrollers 

which are used in security relevant IoT products is given. An online market analysis based on publicly 

available information was conducted to substantiate the relevance of microcontrollers for such products. 

Further, this report gives an overview of state-of-the-art hardware attacks against microcontrollers. Based 

on a literature research, the most important attack vectors are elaborated and summarized. Three hardware 

attacks and suitable countermeasures that are of interest for further investigation are proposed. As 

mitigation, software-based countermeasures that can be retrofitted for such devices with minimal cost and 

without a significant degradation of performance or user experience are promoted. As long as hardware 

countermeasures are only slowly adapted for COTS microcontrollers, software countermeasures are the only 

way to protect products from hardware attacks. The report concludes with a laboratory analysis where two of 

the proposals are practically evaluated. The results demonstrate the effectiveness of software 

countermeasures and are meant to motivate vendors to consider these countermeasures for their products. 
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2 Market Analysis on the use of Microcontrollers 

In order to understand which microcontrollers are used in security-relevant products, a market analysis is 

conducted. The analysis is based on different product categories to estimate the share of microcontrollers 

and manufacturers across application domains. 

Market Analysis. The starting point for the market analysis is a list of microcontroller manufacturers that 

was created in the course of the work of Fraunhofer AISEC in the field of hardware security. To avoid a 

possible bias or forgetting manufacturers, this list was compared and completed with an independent and 

public list of microcontroller manufacturers [4]. From these manufacturers a list of product categories they 

propose for their devices was obtained. These categories are boiled down to those where microcontrollers 

are used in a security-relevant context. For each application, representative products are taken into account 

and their internals are investigated. Since product manufacturers rarely provide publicly available 

information about integrated components such as microcontrollers, other sources are used. This includes 

but is not limited to publicly available teardowns of products by the FCC and researchers in forums, blogs, 

and journals. Our findings are condensed into overview tables for the respective sections on product 

categories. 

It is important to note that our market analysis does not represent the exact and complete distribution of 

microcontroller devices in a product category. There are multiple reasons for this: first, the fact that 

manufacturers hardly ever publish information on integrated components, as already mentioned. Second, 

the sources that are consulted for these information instead do not fully reflect the market. Pricing, 

availability, and popularity make certain products more likely to appear in public teardowns. Naturally, this 

could lead to a potential over- or underrepresentation of certain vendors in our market analysis. But even if 

the study does not paint the complete picture, it suffices for the reader to accurately judge the threat of 

hardware attacks in the identified categories. For all categories, products incorporating microcontrollers by 

four or more different vendors were found. The identified microcontrollers are of similar price ranges and 

capability levels. None of these include dedicated countermeasures against hardware attacks. Therefore, 

most products of the respective categories are expected to feature identical or similar microcontrollers and 

the subsequent listings are considered to be representative within this study. 

The following applications were identified across vendors and are deemed most relevant for this study: 

 hardware security tokens 

 hardware crypto wallets 

 smart locks 

 point-of-sale (POS) terminals 

Adversary Model. It is assumed an adversary that has either the incentive to extract intellectual property (IP) 

or cryptographic secrets. The consequences of such an attack can be of economic relevance, e.g. stealing from 

an economic competitor, or security relevance, e.g. compromising critical infrastructure, or both, e.g. 

compromising critical infrastructure to harm a competitor. However, the exact intentions behind IP theft or 

extraction of cryptographic secrets are not further explored in this report. 

For the extraction of cryptographic secrets the attacks launched can be further classified as supply chain 

attack, evil maid attack, or straightforward theft: 

 A supply chain attack targets the delivery of products. The adversary can either compromise the 
shipped device or ship own malicious devices which seem to behave like an original device. 

 If a product is already in use an attacker may compromise it in an evil maid fashion or try to steal it. 
The evil maid scenario is defined by the fact that the adversary has only access for a limited time and 
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tries to avoid changes to the outer appearance or observable behavior of the device. In this case, if the 
user of a device leaves it out of sight temporarily, i.e. a few minutes up to a day, the attack of the evil 
maid is not detected. 

 If the adversary steals the device, the time span for attacks is longer and damages to hardware or 
software are unimportant. However, in certain scenarios, the victim can take action to invalidate the 
cryptographic secrets stored on the device if the theft is detected. 

Within these three attack types, an adversary has the possibility to indirectly or to directly extract secrets. 

The direct approach allows the adversary to immediately extract secrets by circumventing existing 

countermeasures. Depending on the application, this attack can be used in all three attack types. In contrast, 

the indirect approach is to tamper the functionality. This can lead to the insecure usage of cryptographic 

algorithms, which is then exploited by an attacker. Since the attacker has to use the device after the 

modification to be effective, only evil maid and supply chain attacks are possible. For example, forcing the 

product to use a low-quality or even static source of randomness can lead to easy-to-guess keys, which may 

be brute-forced by an attacker in a second step. Further, this allows to influence the overall behavior of the 

product, which leads to a security compromise. For instance, if the product does no longer verify the 

authenticity and integrity of a request, which shall be assured cryptographically. 

Hardware Security Tokens. Hardware security tokens are used for authentication to web or local services. 

They can be used as a single or second factor. A single factor authentication is used for the so called password-

less authentication. Due to the ease of use this method is becoming increasingly popular. The fact that the 

security relies on a single secret stored on the device makes the token particularly interesting for an adversary. 

Compromising the hardware token is sufficient for a successful authentication. In general, hardware security 

tokens store attestation keys as well as service keys, which are both of interest for an adversary. Besides the 

keys, the functionality to generate new keys is also of interest. The attestation keys are long-term secrets, 

which are loaded by the manufacturer or are created by the device itself during production. These are used to 

attest the authenticity and integrity of a device to a user or a service. If an attacker has access to such 

attestation keys, they would be able to ship own devices, which generate valid attestation proofs. The service 

keys are run-time secrets, which are loaded by the user or created by the device itself during the usage, for 

instance, secrets specifically used to gain access to a service. Having knowledge about service keys would allow 

to authenticate against a service without being in possession of the respective hardware security token. This 

would undermine the security guarantees given by hardware security tokens. 

Table 2.1: Hardware security tokens and their integrated microcontrollers found in the market analysis. 

Vendor Device Family Product 

Microchip (former Atmel) AT32UC3A Nitrokey Storage 2 

STMicroelectronics STM32F1 

 

 

STM32L4 

Nitrokey Start 

Nitrokey Pro 2 

Nitrokey HSM 2 

Nitrokey FIDO2 

SoloKeys Solo 1 USB-A 

SoloKeys Solo 1 USB-C 

SoloKeys Solo 1 Tap USB-A 

SoloKeys Somu 

NXP LPC55S6 

 

Kinetis 

LPC11Uxx 

Nitrokey 3 

Solokeys Solo 2A+ 

OnlyKey OnlyKey 

Google Titan Security Key 

Silicon Labs EFR32BG13 Certgate AirID FIDO 



2 Market Analysis on the use of Microcontrollers 

 

Federal Office for Information Security 9 

The results of the market analysis, summarized in Table 2.1, show that mostly microcontrollers from 

STMicroelectronics or NXP are used within hardware security tokens. Only few devices are based on 

microcontrollers from Microchip or Silicon Labs. 

Hardware Crypto Wallets. While the actual record of crypto currency is stored in a public blockchain, the 

secret key that provides access to the actual owner must be stored securely in a crypto wallet. Any transaction 

like transferring the currency requires a user authentication with this key. If needed, the crypto wallet can 

also generate new keys for future transactions. An adversary who gains illegal access to a user’s secret key can 

use the cryptocurrency as they please, e.g. transfer it to herself. The economical value protected by crypto 

wallets is not technically limited. This makes crypto wallets interesting targets for an attacker. 

Crypto wallets can be implemented in software, but often hardware wallets are used, as attacks on hardware 

wallets require physical access. An adversary is interested in all attacks that allow them to extract the secret 

key without being the actual owner of the wallet. In addition, they also profit from gaining the ability to 

generate new keys. Manufacturers of hardware crypto wallets are aware of attacks and especially supply chain 

attacks. Hence, to encounter these they modify the packaging, add seals, and harden the firmware of their 

devices [3]. 

Table 2.2 shows device families of microcontrollers that are commonly used in hardware crypto wallets. A 

large market share is taken up by microcontrollers from STMicroelectronics. Otherwise, microcontrollers 

from Microchip, Mediatek, and Ambiq were found to be parts of hardware crypto wallets. 

Table 2.2: Hardware crypto wallets and their integrated microcontrollers found in the market analysis. 

Vendor Device Family Product 

Microchip (former Atmel) SAM D51 Shiftcrypto BitBox02 

STMicroelectronics STM32F0 

STM32F2 

 

 

 

STM32L4 

STM32L4+ 

STM32H7 

STM32WB 

 

STM32MP1 

Ledger Nano S 

Trezor One 

Shapeshift keepkey 

ProKey Wallet 

ProKey Optimum 

Coinkite Coldcard Mk3 

Coinkite Coldcard Mk4 

Foundation Passport Batch 2 

Ledger Nano X 

Keevo Model 1 

NGRAVE ZERO 

Mediatek MT6850 Keystone Essential 

Ambiq Apollo3 Hashwallet 

Smart Locks. Nowadays, modern access control systems are often built with the help of smart locks. Smart 

locks enable the facility management to dynamically update access rights, for example for new employees. 

This also implies that secret information used by new employees to authenticate themselves must be 

frequently integrated into the system. If an adversary is able to integrate arbitrary keys into the system they 

would gain unauthorized access to the facility. In addition, the successful cloning of existing keys would 

give them the opportunity to intrude while impersonating an authorized person. 

The results of the market analysis summarized in Table 2.3 show that microcontrollers from Microchip, 

STMicroelectronics, Silicon Labs, Infineon, Texas Instruments, or Telink Semiconductor are used within 

smart locks. In contrast to the other analyzed product categories, there is no major vendor of microcontrollers 

in this category. 
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Table 2.3: Smart locks and their integrated microcontrollers found in the market analysis. 

Vendor Device Family Product

Microchip (former Atmel) PIC18F87K22 

PIC16F1938 

AT91RM3400 

Schlage Sense Smart Deadbolt 

MiLocks Keyless Entry 

Simon Voss Entry Transponder 

STMicroelectronics STM32L1 August Smart Lock 

Silicon Labs EFM32 Gecko Salto XS4 One 

Salto XS4 Mini 

Infineon PSoC 1 

PSoC 6 

Unknown Product 

August Smart Lock 

Texas Instruments TI MSP430 Schlage Connected Keypad Lock 

Telink Semiconductor TLSR825X OASBIKE Bluetooth Smart Door 

Lock 

POS Terminals. Point-of-sale terminals are the standard way of processing payments in the retail industry. 

Typically they do not store secret information that is of interest for an adversary. Instead, tampering attacks 

that alter the original functionality of the terminal are a potential threat for these devices. For example, the 

customer must trust the information shown on the display integrated into a POS terminal, i.e. the amount to 

be paid. Therefore, any compromise which gains control over the display would enable fraud. This is the case 

because the amount shown on the display and the amount charged from the card may not match. An attacker 

could charge more from the card than the customer is aware of. Thus, the customer loses the opportunity to 

verify the amount to be charged before the transaction is carried out. 

The results of the market analysis in Table 2.4 show that mostly microcontrollers from NXP, 

STMicroelectronics, Maxim Integrated or Nordic Semiconductor are used within POS terminals. 

Table 2.4: POS terminals and their integrated microcontrollers found in the market analysis. 

Vendor Device Family Product

NXP Kinetis K22 

i.MX258 

Square POS 

Square Reader 

Nexgo G3N 

STMicroelectronics STM32F0 Square POS 

Square Reader 

Maxim Integrated MAX32550 

DS5240 

SumUp Air 

Sagem Monetèl ETF930S-GEM 

Sagem Monetèl ETF930S-GEM 

Nordic Semiconductor nRF52 SumUp Air 
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3 Hardware Attacks 

The following chapter lays out attack classes that were deemed most relevant for hardware attacks on 

microcontrollers. The attack classes were selected from contemporary research on hardware attacks 

published in journals or blogs and presented on conferences. As stated in Chapter 2, threats posed by IP theft, 

evil maid adversaries, supply chain attacks, and device theft are the focus of this report. Therefore, the attack 

classes were chosen accordingly to these scenarios. For each attack class, a concrete attack proposal and 

evaluation of countermeasures is proposed. 

 

3.1 Control Flow Manipulation Attacks 

The control flow of an application determines the order in which instructions are executed. Control flow 

attacks aim to modify the flow of execution of a program in a way that benefits the adversary. Manipulating 

the control flow opens various possibilities to undermine the security of a system. For example, it allows the 

adversary to execute code which requires higher privileges, or to deliberately prevent code execution. In the 

latter case, the adversary can, for instance, circumvent password checks and thereby gain higher privileges. 

A widely known entry gate to mount control flow attacks are buffer overflows, which can corrupt the return 

address on the stack. This vulnerability allows the adversary to mount a return-oriented programming (ROP) 

attack and thereby arbitrary code execution on a target, as the return address determines the instructions to 

be executed after returning from a function call. ROP and related attacks require a vulnerability in the 

application code that can be exploited by the adversary. While these vulnerabilities are often reported, they 

can be mitigated by the use of safe programming languages such as Rust. However, at the moment, the Rust 

support for microcontrollers is mainly community-driven and far from being as comprehensive as the 

support for the C programming language. 

For embedded devices and microcontrollers where physical attacks are possible, control flow manipulation 

attacks do not require vulnerabilities in the application code. Instead, hardware attacks such as voltage and 

clock glitching, electromagnetic fault injection (EMFI) and laser fault injection (LFI) can be used to manipulate 

the control flow of an application. 

Fault attacks are used for causing erroneous behavior such as: 

 Bypassing the execution of either a specific instruction (single instruction skip), or multiple 
contiguous instructions (multiple instruction skips) 

 Corrupting data on memory or during a bus transfer 

 Replacing an instruction with another one, i.e, instruction modification 

 Tampering of the program counter 

 

This erroneous behavior is then exploited by the adversaries in order to gain privileges, bypass security 

measures, extract information, inject malware and more. 

Current literature includes numerous examples of successful fault injection attacks on commercial 

components and devices. Those include, for example, circumventing the memory protection via fault 

injection for enabling the extraction and subsequently reverse engineering of automotive firmware [65]. 

Another example is the extraction of a secret key used in an AES core by manipulating the core configuration 

in [53],[56]. In [84] the authors manage to escape from a TrustZone with the help of fault injection attacks, and 

in [67] the authors show how fault attacks can be used to generate buffer overflows and demonstrate a 

complete exploit with a subsequent software attack. Voltage glitching was used in [14] to skip security checks 

in the bootloader of various microcontrollers and therewith bypass the memory protection. Similarly, in [70], 
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instruction skips are used to skip bound checks in USB stacks and exploited to perform an out-of-bounds read 

and to dump credentials. 

 

3.1.1 Countermeasures 

In order to protect microcontrollers against control flow manipulation, several software and hardware 

countermeasures have been proposed [8],[9],[29],[30],[35],[37],[51],[73],[74],[80],[81],[90],[97]. The aim of those 

countermeasures is the avoidance, detection and/or correction of control flow attacks. 

Software-based countermeasures have the advantage that no special hardware is required and retrofitting 

may be supported via software updates. Nonetheless, it is not always possible to protect against hardware 

attacks with software-based countermeasures, as faults are introduced directly into the underlying hardware. 

According to their point of integration, control flow protection techniques can be divided into four different 

categories: 

 Source code countermeasures: At the source code level, software countermeasures are added through 
a high-level programming language, e.g. the C language. For example, intra-procedural jump attacks 
could be detected by inserting routine-calls into protected code. Those routines would then check 
and increment a counter before the next line of code is executed. The disadvantage of this type of 
countermeasures is that compiler optimizations may have to be disabled in order for the 
countermeasure to remain present after compilation. Another drawback is that this technique 
increases the code base and the complexity developers have to deal with. 

 Compiler-based countermeasures: Unlike source code countermeasures, the protection added by 
compiler-based countermeasures is guaranteed to be present in binary form, because of the compiler 
being explicitly aware of its presence. Compiler-based countermeasures make use of the different 
representations that a program goes through before having a target-specific representation, i.e. binary 
form. The most convenient representation for the addition of control flow protections is the so called 
intermediate representation (IR), which is language and architecture independent. However, the 
underlying platform architecture still has to be considered for a robust and efficient inclusion of 
countermeasures. 

 Post-compilation countermeasures: Post-compilation countermeasures refer to the addition of 
control flow protections to the binary form at the machine language level, i.e. assembly language. 
This may, for example, involve the addition of redundant instructions, which have the exact same 
functionality and guarantee the same computational outcome, even when instructions are skipped. 
The downside of such techniques is the added overhead regarding code size and execution time with 
respect to compiler- based countermeasures. This is due to countermeasures being added at a point, 
at which processor registers and memory addresses have already been allocated, thus requiring the 
addition of intermediate variables and branches to the existing binary. While source code and 
compiler-based countermeasures are already market-ready and applied in real-world products, post-
compilation countermeasures are more a research topic. Due to the lack of automated tools and the 
manual effort required of developers, their use is not known outside the research community. 

  Hardware-based countermeasures: Those are countermeasures that involve the modification of the 
system hardware, for example addition of hardware peripherals or modification of the instruction 
set. Compared with their software counterparts, hardware-based countermeasures have less impact 
on the system performance, as they don’t demand execution time from the CPU. However, they are 
expensive to implement and of course cannot be retrofitted into existing platforms via software 
updates. 

 

After laying out the four general categories based on the point of inclusion, different techniques for 

hardening software against hardware attacks tampering with the control flow are described. These 
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techniques may fall into one or more of the four categories introduced above, depending on the 

implementation layer they are applied on. 

 Classic Loop Hardening: This technique relies on duplicating the loop counters and exit conditions, 
such that the condition has to be checked twice before exiting the loop [78]. By comparing the 
redundant loop counters, it is then possible to detect fault injection attempts. 

 Instruction Redundancy: This technique involves the execution of critical instructions at least twice, 
i.e. instruction duplication, in order to provide the same computational result even if instructions are 
skipped [9]. The redundant instructions must be idempotent, i.e. instructions which can be executed 
several times while providing the same result as when executed only once. For non-idempotent 
instructions, an equivalent has to be found, which greatly increases the amount of instructions and 
often involves the use of additional registers. However, depending on the threat model, the 
duplication of instructions may still be insufficient, as some hardware attacks are able to skip multiple 
instructions at once, as demonstrated in [35], where skips of up to 6 consecutive instructions were 
achieved. 

 Redundant-Encoded Data: This technique is based on encoding data in order to prevent memory 
corruption and protect memory transfers [37]. The encoding projects the value of the data into a 
broader value range, thus facilitating the detection of manipulations. 

 Global Signature Register: This technique divides memory in basic blocks and performs signature 
checks when transitioning between them, thus being able to detect control flow deviations between 
basic blocks [81]. 

 Redundant Computation: This technique relies on computations being executed twice, using different 
sets of registers, in order to detect instruction skips and register corruption. It was first proposed in 
[74] and enhanced in various works presented in recent years [29],[30],[81]. The newest 
implementation of this technique is presented in [90], where the authors state that control flow 
corruption inevitably leads to data corruption, thus making data corruption detection a mean for 
detecting control flow corruption. 

 Variable Duplication: This technique is based on duplicating all variables and their respective 
read/write operations [80]. Write operations are performed on the original variable and on its 
duplicate, while read operations are always followed by a comparison of both variables. 

 Function Duplication: This technique comprises the duplication of a function. The inputs given to 
both functions are the same, but the results are stored in different variables and compared after both 
have been executed [8]. A fault attempt is detected if the results of both functions do not match. An 
enhancement of this technique is the use of equivalent, non-identical duplicate functions, in order to 
decrease the probability of an attack being successful on both functions. 

 Statement Counters: This technique refers to the addition of counters and checks between portions of 
code, e.g., functions, loops, single lines of code [51]. The value of the counters indicate if the statements 
are executed in the right order, and fault attempts are identified by the presence of unexpected 
counter values, i.e. a counter increment was skipped. 

 

3.1.2 Attack Proposal and Countermeasure Evaluation 

Due to their potential for bypassing security measures and embedded protections such as secure boot and 

memory bound checks, a demonstration of fault injection attacks causing instruction skips on 

microcontrollers is part of this report. This section establishes the practical attack and countermeasure 

evaluation and its relevance to control flow attacks in general. The laboratory demonstration is described in 

Section 4.2. 
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For demonstrating those faults, EMFI [70] on STM32L4 microcontrollers seems a promising approach. This 

is due to STM32 being one of the most relevant families of microcontrollers for all considered product 

categories, as shown in the market analysis in Chapter 2. 

The proposed countermeasure to evaluate is the software-based redundant computation presented in [90], 

which targets data flow and control flow corruption. As described above, it builds on the assumption that 

control flow manipulation leads to data corruption. First, works on redundant execution that laid the 

foundation for [90] such as [29],[30],[74],[81] and pure control flow protection approaches such as [73],[97] are 

revisited. This is deemed necessary, as all these works were driven by safety-focused research, and therefore 

their findings can not be directly applied to security. The results of this evaluation are presented in Section 

4.2.2. 

For future work, further analysis of techniques to protect memory contents are proposed. The authors of 

[90] rely on ECC memory protection to ensure instruction and memory integrity. If no ECC hardware is 

available, as is often the case on COTS devices, an attacker could still tamper memory contents. A possible 

mitigation of this attack vector is the insertion of encoded data during compile time in order to protect data 

in memory and bus transfers. For such a compiler extension, different coding schemes should be evaluated 

regarding their detection capabilities and performance overhead. Ideally, at some point in the future, all 

these efforts can be combined into a framework that hardens software for arbitrary COTS microcontrollers 

without having any constraints on the underlying hardware. Therefore, retrofitting firmware for existing 

products is also possible. 

 

3.2 Side-Channel Attacks 

Side-channel attacks are passive attacks that exploit information emitted due to the fundamental way an 

algorithm is implemented. Among others, cryptographic systems have been broken with timing [50], power 

[49], and electromagnetic [79] side-channel information. For microcontrollers, power and electromagnetic 

emission are the most critical side-channel information an attacker can exploit. On the one hand, this is due 

to the absence of data caches on such systems and the availability of constant-time cryptographic 

algorithms, both of which avoid leakage through the timing side-channel. On the other hand, an attacker 

can easily gain physical access to a microcontroller to measure power and electromagnetic emission. Power 

measurements might require physical modifications such as the integration of measurement elements into 

the power supply path or the removal of decoupling capacitors. This makes them less applicable to evil maid 

and supply chain scenarios. However, EM measurements are typically non-invasive and can be carried out 

in these scenarios. 

The target of side-channel attacks is typically to obtain a cryptographic secret. If known to the attacker, the 

secret allows them further attacks such as impersonation of the device, sending of malicious information, or 

IP theft. This is extremely critical, as microcontrollers often control physical assets. Even if an attacker has 

to spend a lot of effort regarding time and equipment, the attack might pay off. This was demonstrated in a 

resounding fashion by Ronen et al. in [83]. The authors could extract the global AES-CCM key for a Philips 

Hue smart lamp. This key was responsible for verifying the authenticity of OTA firmware updates. Their 

attack would have allowed an evil adversary to build authentic but malicious firmware images and 

compromise the entire wireless network of Philips Hue smart lamps. For example, an adversary could have 

turned off all bulbs in an area such as Paris, where the number of devices exceeds a critical mass. 

A demonstration in [72] showed that side-channel attacks are possible in contexts one might not necessarily 

expect it. O’Flynn and Dewar use on-chip side-channel analysis to measure cryptographic secrets used by 

the trusted domain of a device. For this the authors run code in the untrusted domain that utilizes the ADC 

to obtain side-channel measurements. So while most power and electromagnetic side-channel attacks are 

conducted in a setting where the adversary has access to the device and lab equipment, this is not 
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necessarily required. The attack is demonstrated on the AES peripheral used within the ARM TrustZone of a 

Microchip SAML11 microcontroller. 

Straightforward power and electromagnetic side-channel attacks on unprotected software implementations 

running on microcontrollers are frequently reported. The efforts in [49],[66],[71] are only a few of the papers 

published on this. All these works demonstrate the rather obvious fact that unprotected software must not 

be run on simple microcontrollers, if an adversary can gain access to secret information over the power or 

electromagnetic side-channel. 

 

3.2.1 Countermeasures 

Since power side-channel information was first used by Kocher et al. [49] in 1998, researchers have 

investigated different countermeasures and their effectiveness. Among these countermeasures, masking 

[24],[36],[42] stands out due to efforts in formalizing attacker models and implementations that can 

withstand them. This allows designers to judge the security level of their implementation. An effort to 

standardize masking schemes was recently initiated [15]. 

Masking schemes apply random masks to secret values in order to create secret shares, which are 

subsequently used for the cryptographic computations. In d-order masking, d + 1 shares are used. All but 

one share can be sampled from a uniform random distribution. These are the so-called random masks. The 

final share is chosen such that recombining the shares yields the original secret. A related technique to 

masking is blinding. In contrast to masking, blinding uses algorithmic approaches to mask sensitive values. 

For RSA and ECC, scalar [76] or exponentiation blinding [50] can be used to avoid leakage of secret 

exponents. 

In contrast to masking which hides the actual values, shuffling [44] hides the order in which values are 

processed. Operations are scheduled randomly, which hides correlations of side-channel measurements 

with secret information. 

Another approach to defend against power and electromagnetic side-channel attacks is leakage resilient 

cryptography [63]. Its underlying rationale is to limit the exposure of the secret key such that an attacker has 

limited capabilities in accumulating information over multiple observations. It has been applied 

successfully to cryptographic implementations on microcontrollers in [96]. In contrast to masking and 

shuffling, no randomness is required. Leakage resilient cryptography is therefore also highly relevant for 

retrofitting countermeasures to microcontrollers. The work conducted in [96] could be extended by 

considering the latest leakage resilient schemes such as ISAP [31]. However, this report focuses on the 

application of masking for the countermeasure evaluation proposed in the next section. The continued 

analysis of leakage resilient cryptography on COTS microcontrollers is left open for future efforts. 

Apart from the masking, shuffling, and leakage resilient countermeasures, which include formalized 

knowledge on an attacker’s capabilities, there are several obfuscation approaches often referred to as hiding. 

An example for a hiding-based approach is the installation of random stall or dummy operations and 

additional noise sources to reduce the SNR [93]. Since the resilience of these approaches is hard to put into 

concrete terms they are mostly used in combination with masking or shuffling. Another approach to hide 

power and electromagnetic side-channel information are dedicated logic encodings, e.g. dual rail logic. Dual 

rail implementations balance the power consumption regardless of the processed value [85]. However, 

implementations are costly and vulnerable to attacks based on different propagation times [46]. 

 

3.2.2 Attack Proposal and Countermeasure Evaluation 

Due to the clear focus on masking by the research community it is also the focus of protecting 

microcontrollers against side-channel attacks for this report. Masked software implementations would 
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allow retrofitting side-channel resilience to COTS microcontrollers. It should be emphasized that leakage 

resilient cryptography is also an established method in protecting against side-channel attacks. Its suitability 

for retrofitting side-channel protection to microcontrollers featuring generic unprotected AES hardware 

accelerators has been explored successfully in [96]. 

There are two approaches to measure the resilience of a masked implementation. The traditional approach 

is to rely on standardized laboratory work [33],[34],[89]. This requires massive effort and recent works have 

shown that standardized tests are not guaranteed to find weaknesses [16]. 

A newer approach was brought forward in [77]. In this work, Prouff and Rivain present a formal proof of the 

information leakage in masked implementations. Since then, several formal proofs and works that try to 

bridge the gap between these theoretic proofs and the actual capabilities of an adversary with more realistic 

models were published [13],[23],[43]. In [20],[25],[64],[94] various authors show that attacks on naive masking 

implementations are easier than originally thought. Formal approaches could have shown these 

vulnerabilities without requiring costly evaluations in the laboratory. However, in [12], Battistello et al. show 

an attack on an implementation that was deemed secure in a formal model. Wrong assumptions on the 

model made attacking the implementation a lot easier than originally thought. This shows that the maturity 

of formal approaches must increase so that they can be put to practical use. Nonetheless, there is massive 

potential in their application to security evaluations. 

Research in both formal approaches to masking and attacks on masked implementations has seen a massive 

attention gain in recent years. Attacks on masked implementations can be divided into two categories. Each 

category represents a challenge in implementing masking on microcontrollers correctly. Attacks of the 

respective category exploit shortcomings in meeting this challenge. 

Low physical Noise of Microcontrollers. Microcontrollers suffer from low physical noise. Among others, 

this is due to their nature of sequentially executing one instruction after the other. Thus, an attacker can 

easily obtain patterns related to secret information from power or electromagnetic side-channel 

measurement traces. In [16], Bronchain and Standaert attack a hardened AES implementation proposed by 

the French ANSSI. They show that by means of advanced statistical post-processing, the full key can be 

recovered with less than 2,000 measurements. Limited noise in the attacked ARM Cortex-M4 

(ATSAM4LC4CA) is the primary cause for this security flaw. The authors propose a significantly higher 

number of shares to counteract this limitation. Additionally, the authors make an interesting point on 

closed source security evaluations. A preliminary leakage assessment of the implementation by ANSSI did 

not detect dependencies between traces and secret data in up to 100,000 traces. With their advanced attacks, 

the authors were able to recover the key with significantly less. In [60], Masure and Strullu extend the work 

by [16] with new attacks and a public data set of traces. Similar to [16], Udvarhelyi et al. [95] show an attack 

on a hardened implementation of the lightweight crypto algorithm ISAP [32]. Their target is an ARM 

Cortex-M0 (STM32F0) that also suffers from low physical noise. In [17], Bronchain and Standaert attack 

higher-order masked implementations of AES and the lightweight crypto scheme Spook / Clyde [22]. Their 

target platforms are an ARM Cortex-M0 (STM32F0) and an ARM Cortex-M3 (STM32F100) microcontroller. A 

6-share AES implementation on the Cortex-M0 was demonstrated to be broken with 10 traces and a 5-share 

AES implementation on the Cortex-M3 with 1000 traces. Only an 8-share implementation of Clyde on the 

Cortex-M0 could not be broken with less than 50,000 traces. They evaluate their findings in a formal model 

[43] and demonstrate that the model shows the same results if it is instantiated with realistic noise 

parameters. Gohr et al. [40] evaluate attacks on the same traces of Spook / Clyde with deep learning and 

achieve a similar efficiency as [17]. 

Micro-architectural Leakage. In [7], Balasch et al. show an implementation that provides significantly less 

side-channel resilience than expected because the actual architecture of the implementation and its leakage 

through micro-architectural transitions are not considered. An example for such a transition is if a share in 

an internal register (e.g. in the load-store unit) is overwritten with another share. Balasch et al. compare a 

masked C implementation and a masked assembly implementation that considers architectural leakage of 

an Atmega163 and an 8051 microcontroller. They demonstrate that the security order of the C 
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implementation reduces by factor two if a more realistic model that takes transitions into account is 

considered. Gao et al. [38] show a similar effect for share sliced implementations on an ARM Cortex-M0 

(NXP LPC 1114) and ARM Cortex-M3 (NXP LPC1313). In [75], Papagiannopoulos and Veshchikov study the 

micro-architectural leakage effects of an Atmega163 in more depth and propose a tool to verify AVR 

assembly code for such effects. 

This is only one of many verification tools for masked implementations that have been proposed by 

researchers in recent years [10],[11],[26],[39],[48],[62],[92],[98]. The works differ in the theoretic model they 

rely on, the architecture they provide verification for, the architectural leakage effects they consider and 

whether they can be used for hardware or software masking. A complete systematization of knowledge on 

design tools for side-channel aware implementations can be found in [21]. More information on theory and 

application of masking in general can be found in the survey by Covic et al. [27]. Marshall et al. [59] 

published an interesting study of different micro-architectural leakage effects on different microcontrollers. 

Formal verification of masked implementations can potentially provide a high resilience against side-

channel attacks without arduous and possibly erroneous laboratory evaluations. However, as of now, the 

gap between theoretic proofs, realistic noise levels, and realistic leakage due to micro-architectural effects is 

too wide. For future evaluation, an attack and countermeasure demonstration is proposed to close this gap. 

Practical Evaluation. The attack on higher-order implementations of AES by Bronchain and Standaert in 

[17] is one of the most fatal attacks as they achieve a complete key recovery with very few traces. They 

connect their findings to a formal model [43] and identify the low amount of noise on STM32F0 and 

STM32F100 microcontrollers as the primary weakness. However, they do not consider leakages caused by 

micro-architectural effects. It remains unclear how much harder the attack gets if these leakage effects are 

taken into account and are mitigated. Further, the authors assume very strong attacker capabilities like 

profiling with known randomness. This decision is backed by the reasoning from [6], as making worst case 

assumptions on the attacker provides a reliable and safe way to evaluate countermeasures. If a 

countermeasure is effective against the worst case attacker (e.g. one that can profile with known 

randomness), it is guaranteed to hold up against attackers with less capabilities. However, this implies that 

countermeasures are more expensive in terms of performance than they need to be in the face of realistic 

adversaries. This leaves room for further evaluations. Recent work by Masure et al. proposes a threat model 

for so-called scheme-aware attackers, which makes more realistic assumptions on an adversary’s 

capabilities, while still providing a reliable and safe way to evaluate countermeasures [61]. Within this 

model, adversaries know the implemented scheme and countermeasures from high level source code all the 

way to the actual machine code and its execution trace (i.e. what happens when), but they do not have access 

to internal resources such as the randomness generated by the internal random number generator. Future 

work that evaluates existing attacks and countermeasures against such a threat model would provide 

valuable insights for retrofitting countermeasures to COTS microcontrollers. 

The attack published by Bronchain and Standaert in [17] is a promising starting point for such an evaluation. 

Their evaluation could be extended by protecting the AES implementation against micro-architectural 

faults that cause leakage. The scVerif tool [11] can be used to detect such faults in the AES code. In [5], 

Abromeit et al. propose a compiler built on top of the scVerif tool that automatically generates correctly 

masked software. Unfortunately, the compiler was not made publicly available for further evaluation. 

The verified implementation is then again attacked with the proposed attack by Bronchain and Standaert. 

In addition, other attack approaches from [18],[19],[40],[58] can be adapted for a thorough evaluation. This 

puts the leakages caused by micro-architectural effects into context with the shortcoming of low physical 

noise. Since the advanced attacks by Bronchain and Standaert exploit randomness reductions and profile 

with known randomness, a successful key recovery is still very likely. 

In this case, more relaxed adversary models and a higher number of shares can be revisited. These 

evaluations can be conducted both in theory with the formal model from [43], as already outlined by 

Bronchain and Standaert in their paper, and with further practical evaluations. This investigation is meant 
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to either back-up or contradict the pessimistic outlook by Bronchain and Standaert which suggests that the 

effectiveness of masking on devices with low physical noise is limited in the face of strong adversary 

assumptions. If this can not be contradicted, parallel hardware architectures with a higher level of noise are, 

if available, the only hope for such devices. In this case, retrofitting side-channel security with software 

masking is impossible. 

A laboratory evaluation of the proposed attack and countermeasure analysis is not part of this report. 

Instead, this work is left open for future efforts. 

 

3.3 Read-out Protection Bypass Attacks 

Microcontrollers usually have an integrated debug interface which is used to aid development, initial 

commissioning, and debugging of a system. This interface provides access to the internals of a 

microcontroller, including its flash memory and SRAM, which often contain valuable IP, cryptographic 

credentials, or other sensitive data. 

The component that restricts access to the internals of a microcontroller via the debug interface is called 

read-out protection. A simple implementation of a read-out protection allows only the irreversible 

disabling of all debug access. However, depending on the application and product life cycle, this is not 

always desired. For failure analysis or return management in general, debug access to certain internals is 

often necessary and desired by the manufacturer of a product. To enable manufacturers to analyze defective 

products returned by customers, some microcontrollers support multiple protection levels with different 

access restrictions. For example, access to the internal SRAM is allowed for failure analysis while the non-

volatile flash memory, which usually contains the IP and other sensitive data, remains inaccessible via the 

debug interface. In case the debug interface is not irreversibly disabled, different methods for reactivation 

exist. Some implementations allow to reactivate the debug interface only after erasing all data on the 

microcontroller. Others allow password-based or even more sophisticated challenge-response based 

approaches based on symmetric or even public-key cryptography. Another example where the debug 

interface cannot be fully disabled and a more complex read-out protection is necessary is when multiple 

parties are involved in the firmware development process. Since applications become more and more 

complex, the firmware is sometimes not developed by one company but the product of multiple software 

components provided by different companies. To protect the IP of all involved parties during the 

development process, more sophisticated read-out protection techniques are needed in order to protect the 

individual IPs on a microcontroller. 

Since the debug interface provides access to the internals of a microcontroller, attacking this interface is a 

valuable target for adversaries. The ultimate goal of an adversary is to gain unlimited access and bypass the 

read-out protection completely. However, depending on the application a microcontroller is used for, 

partial access might be sufficient, for example only to the internal SRAM or some CPU registers. 

Attacks against read-out protection techniques can be split into the two categories physical and non-

physical, depending on whether physical manipulations, temporary or permanent, are used or not. 

Non-physical Attacks. Attacks that do not require physical tampering of a device are categorized as non-

physical attacks. They are characterized by exploiting vulnerabilities caused by either the implementation of 

a read-out protection or even a conceptual weakness. 

One example for exploiting an implementation flaw in a read-out protection is a race condition found in 

the STM32F0 microcontroller series from STMicroelectronics [68]. After the power-up of this 

microcontroller, there is a short time period in which the debug protection is not yet active. If an adversary 

is able to connect to the debug interface fast enough and perform a read operation before the protection 

becomes active, the flash memory can be read out. Since the time span the protection is inactive is very 
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short, the microcontroller needs to be power-cycled for every read operation. With this approach, the entire 

flash memory, including the containing IP and other sensitive data, can be read out in just a few minutes. 

A conceptual weakness of a read-out protection feature was discovered for the nRF52, CKS32F1, and 

GD32VF1 microcontroller series [47],[69]. These devices are equipped with a read-out protection feature 

that, when activated, restricts access to the internal flash memory via the debug interface. However, access 

to the internal SRAM and the CPU remains possible. This approach has the drawback that it allows an 

adversary to access temporary credentials stored in SRAM or CPU registers. But even more problematic is 

that this design can be exploited to bypass the read-out protection and gain access to the flash memory. By 

placing a load instruction into the SRAM and instruct the CPU to execute it, the access restriction to the 

flash memory can be circumvented. The trick is to use a load instruction such that the CPU loads data from 

flash memory into the SRAM, which is accessible to the adversary. Another conceptual weakness was 

discovered in the STM32F1 series [87]. Similar to the previous approach, only direct access to the flash 

memory via the debug interface is blocked. However, the partial debug access is sufficient to exploit a 

vulnerability that leaks content of the flash memory through the PC register. This attack allows to extract 

large parts of the non-volatile flash memory and thus poses a threat to the containing IP and cryptographic 

secrets. 

A common implementation for read-out protection techniques is that a reactivation of the debug interface 

first performs a mass erase of all internal memories. This ensures that sensitive information stored on a 

microcontroller is erased before the debug access is available again. The Atmel SAM7xC and Texas 

Instruments CC2400 series are only two examples for microcontrollers that implement this feature. One 

characteristic of these two microcontrollers is that reactivating the debug interface erases the flash memory 

content but not the SRAM [41],[52]. As a consequence, sensitive data in SRAM is accessible to an adversary 

after reactivating the debug interface. 

Another conceptual weakness has been identified in an IP protection technique based on execute-only 

memory (XOM) which is integrated in a wide range of microcontrollers. This feature allows that multiple 

parties can sequentially develop and deploy firmware on a microcontroller without being able to copy the 

firmware of the other parties but being able to use it. In [86], the authors show that a specific execution of 

the protected code combined with information on the CPU registers and the SRAM is sufficient to recover 

the code stored in the XOM. 

The presented non-physical attacks show how diverse the different implementations of read-out 

protections are and that even very restrictive access to the internals of a microcontroller can be exploited to 

gain access to sensitive information. These attacks are very powerful and require no special equipment, only 

tools every firmware developer uses for daily work. 

Physical Attacks. In contrast to the previous attacks, physical attacks tamper with the behavior of the 

underlying hardware implementations of a read-out protection. A physical attack can further be categorized 

into non-invasive, semi- invasive, and invasive: 

 Non-invasive attacks do not require modifications of the device. Methods in this category are, for 
example, voltage or clock glitching, and EMFI. 

 Semi-invasive attacks need preparation of the device under attack, such as decapsulation. LFI and 
other optical attacks are examples for this category. 

 Invasive attacks also require chip decapsulation but further need preparations such as removal of the 
passivation layer of the chip. Invasive attacks range from cheaper attacks like probing of the on-chip 
interconnects to more sophisticated and expensive attacks like chip surgery using a focused ion beam 
(FIB). Due to the high effort and cost of invasive attacks they are not largely represented in attacks on 
COTS microcontrollers. 
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Non-invasive attacks to fully bypass the read-out protection have been shown for the nRF52 and EFM32 

microcontroller series [54],[55],[57],[88]. The read-out protection can be temporarily disabled by applying a 

voltage glitch or injecting a pulse via EMFI during the power-up phase of the microcontrollers. The 

underlying shortcomings that lead to this effect are not fully understood and remain unknown. This is not 

unusual for physical attacks, especially when the underlying hardware implementation is a black-box.  

Nevertheless, in some cases the effects are fully understood, for example, an attack on the read-out 

protection of the STM32L4 microcontroller series [88]. This attack exploits a design flaw, which leads the 

hardware to downgrade the protection level, if an error during the transfer of configuration data from flash 

memory into an internal register is detected. By injecting a fault via EMFI at a specific time during the 

startup phase of the microcontroller this protection downgrade can be triggered. It is still not fully 

understood how the induced fault propagates, but how the system reacts to the occurrence of an error can 

be derived from the public documents. 

Another non-invasive attack vector that tampers with the read-out protection was discovered by Schink et 

al. in [88]. As mentioned earlier, some implementations allow to reactivate the debug interface only after 

performing a mass erase of all memory blocks of a microcontroller, which are usually flash memory and 

SRAM. 

The reactivation process consists of two phases: first, all the memory of the microcontroller is erased. 

Second, the debug interface is reactivated. The authors show that by injecting a pulse via EMFI into the first 

phase, the erase procedure can be interrupted and the flash memory content remains intact. The effect is 

that the erase procedure is skipped while the second phase, the debug interface reactivation, is still executed. 

After this attack, the adversary has full debug access to the microcontroller and the internal flash memory. 

So far, this attack has only been demonstrated on the STM32L4 microcontroller, but other devices could 

also be vulnerable since this kind of debug reactivation can be found in various COTS microcontrollers. 

Semi-invasive attacks against read-out protections have been demonstrated on the STM32F1 and GD32F1 

microcontroller series [68],[69]. By applying UV light on a decapsulated STM32F1 microcontroller, the 

protection level stored in flash memory can be downgraded, which reactivates the debug interface. In [69], 

the authors demonstrate an active and passive semi-invasive attack on the read-out protection of the 

GD32F1 microcontroller series from Giga Device. In contrast to other devices, its flash memory is located on 

a separate chip within the package. This design choice enables passive probing attacks by intercepting the 

inter-die bonding wires between memory and microcontroller. This allows an adversary to gain access to 

the content of the flash memory despite the enabled read-out protection. Also, an active attack has been 

demonstrated that manipulates the data transfer between flash memory and microcontroller. The attacker 

modifies the data signals between both chips in order to change the read-out protection configuration. This 

allows the read-out protection level to be downgraded and the debug interface to be re-enabled. 

The examples of physical attacks show that even if there are no design or implementation flaws, read-out 

protections can be circumvented. Even fully deactivated debug interfaces can be reactivated by precisely 

injecting faults or carefully opening the chip package or tamper with the interconnection between chips. 

Even though not all effects of the physical attacks are fully understood, these attacks are still very effective 

and reproducible. 

 

3.3.1 Countermeasures 

Attacks on the read-out protection of microcontrollers are severe because, if successful, they provide direct 

access to the internals of the device. In contrast to attacks on the control flow of an application or 

exploitation of side-channel leakage, the firmware on the microcontroller is usually not involved. As a 

result, retrofittable countermeasures are not able to prevent these attacks but, depending on the application 

a microcontroller is used for, may complicate them or even fully stop their effects and provide a sufficient 
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level of protection. In order to prevent attacks via the debug interface, well and carefully thought-out read-

out protection designs and implementations that take hardware attacks into account are necessary. 

Exemplary mitigations that can be retrofitted either purely through software or using existing hardware 

features of microcontrollers are presented. In general, effective countermeasures against attacks on the 

read-out protection are very specific to the used microcontroller and its application, so this subject can not 

be covered completely. 

Software-based Mitigation. One exemplary attack where software-based mitigation is possible is the 

exploitation of data leakage through the PC register, which enables read access to the flash memory content 

[87]. Exploiting this vulnerability does not allow an adversary to read the entire flash memory, small 

memory regions remain inaccessible. This peculiarity allows a very specific mitigation approach: the flash 

memory content can be organized in such a way that small amounts of data, for example, cryptographic 

credentials are placed in memory regions inaccessible for the adversary. Another example is the attack that 

exploits load instructions to copy the flash memory content into the SRAM that is accessible to the 

adversary [54],[55]. Here, the entire flash memory can be extracted and as the firmware on the 

microcontroller is never executed while the attack is carried out, there is no universal countermeasure that 

can prevent this attack or its effects. However, depending on the application of the microcontroller and the 

assets to be protected, different countermeasures are possible. In an application where the firmware and its 

IP needs to be protected, code obfuscation techniques, as presented in [28],[45], are possible to make reusing 

and reverse engineering of the firmware more complicated. The authors of [28] propose to use a physical 

unclonable identifier as unique secret that determines the order of instructions. If the firmware is copied to 

a different device, the order of instructions would be incorrect. The authors of [28],[45] derive reasonable 

high brute-force complexities. However, it is unclear how much easier an attack gets if the adversary tries 

more complex re-combination approaches than simple brute-force. Further, the practicality of such 

approaches without having dedicated hardware available is questionable. 

In an application where protecting cryptographic secrets is the ultimate goal, more effective software-based 

countermeasures may be possible. For example, in case of hardware security tokens, the secrets used for 

authentication can be stored encrypted in flash memory. During an authentication, the token owner is 

asked for a password or passphrase to decrypt the secrets on-demand, as suggested in [88]. 

Hardware-backed Mitigation. An example for a countermeasure that requires special device features and 

thus depends on the used microcontroller is suggested in [88]. Here, the authors propose to store credentials 

in a dedicated SRAM that can be accessed via the debug interface only when the read-out protection is fully 

disabled. Another example for an application and device specific countermeasure is also presented in [88]. In 

this use case, it is necessary for the adversary to execute the application code such that the secret 

credentials, stored in the read-out protected flash memory, are transferred into the SRAM where they are 

accessible via the debug interface. The authors propose a mitigation approach that checks the state of the 

read-out protection and refuses further operation if the debug interface is not fully disabled. This does not 

completely prevent the attack but complicates it. The adversary needs to mount an additional and time 

consuming attack step to skip this check. Depending on the threat model this countermeasure might 

already provide sufficient protection. 

 

3.3.2 Attack Proposal and Countermeasure Evaluation 

Since read-out protection mechanisms differ from manufacturer to manufacturer or even within individual 

product families, attacks are usually very tailored to a specific implementation. The identification of a 

potential vulnerability and the subsequent evaluation in a laboratory can take a long time. With the goal to 

evaluate the security of as much devices as possible, this report focuses the investigation on vulnerabilities 

that potentially affect multiple device families of a single or even multiple manufacturers. 
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The attack on the flash erase operation after unlocking the debug interface presented by Schink et al. in [88] 

was demonstrated on a single microcontroller family but has the potential to affect a wide range of 

products. The attack is also very severe since it threatens the confidentiality of the entire flash memory 

content and thus affects both IP and cryptographic secrets. The underlying effect of this attack is unclear 

but could affect a variety of devices. The attack was originally demonstrated on an STM32L4 from 

STMicroelectronics but other manufacturers, such as Silicon Labs and Nordic Semiconductor, have 

microcontrollers with similar features. 

For a practical evaluation, first the results of Schink et al. are reproduced on the STM32L4 microcontroller 

family. The laboratory setup and results are described in Section 4.1. The original publication [88] provides 

information on the reliability of the attack working on a single device in their dedicated experimental setup. 

However, reproducibility on other STM32L4 microcontrollers and the influence of setup parameters, for 

example the position of the injection coil, remain unclear. Since the adversary deliberately triggers a mass 

erase of the flash memory and thereby potentially erases all IP and credentials on the device, the assets are 

irreversibly lost if the disruption is not successful. After the results on the STM32L4 are reproduced, the 

attack is investigated on other microcontrollers from STMicroelectronics. The idea behind this approach is 

that the hardware module that is used for the unlocking and erase procedure is the same among the 

microcontroller families. This report also analyses the effect of the attack on devices from other 

manufacturers, preference given to vendors identified during the market analysis. In the original 

publication, EMFI is used to disrupt the erasing procedure. This was adapted for the laboratory evaluation in 

this report (see Section 4.1). Future work should investigate whether voltage glitching is also suitable for this 

attack. Voltage glitching would reduce the attack costs and might be more robust and reliable since only 

precise timing is required. The positioning of the injection coil, which usually has to be done very precisely, 

would no longer be necessary. 

Since software-based countermeasures to prevent attacks on the read-out protection are very application 

and device dependent, there is no general countermeasure or mitigation technique. Instead, 

countermeasures must be tailored to each affected device and product built on top of it. For example, there 

might be affected microcontrollers with special peripherals or features to irrevocably prevent the debug 

interface from being unlocked. Therefore, the laboratory evaluation in Section 4.1 does not include an 

evaluation of countermeasures. 
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4 Laboratory Evaluation 

Based on the analysis of hardware attacks in Chapter 3, two of the three proposed attacks were chosen for 

practical investigation. In the following chapter, the results of this evaluation are presented. In Section 4.1, 

the evaluation results of an attack that targets a microcontroller’s read-out protection are shown. For this 

attack, the repeatability on different devices is extremely important. Therefore, the laboratory setup and its 

building blocks, which are used to achieve a high accuracy, are described in detail. In Section 4.2, the results 

of evaluating a compiler-based countermeasure against control flow manipulation attacks are shown. For 

this attack, the repeatability is less of an issue. A similar setup as for the read-out protection attack can be 

used. 

 

4.1 Flash Erase Suppression 

In Section 3.3, a non-invasive attack demonstrated by Schink et al. that targets the read-out protection of 

STM32L4 microcontrollers [88] was described. The attack is presented as part of a comprehensive analysis of 

open source hardware security tokens. It is only discussed in this context and without a general in-depth 

analysis. However, the attack itself is also of general interest because, if successful, it provides unrestricted 

access to all secrets stored on the microcontroller’s internal flash memory. Further, other microcontrollers of 

the STM32 family or even microcontrollers of other manufacturers may be susceptible to this attack vector. 

For that reason, this attack is reproduced and further details on its practicality are provided in this report. 

The STM32L4 microcontroller family features three read-out protection levels. In level 0, the read-out 

protection is disabled. In level 1, debug access is possible but with the restriction that any read attempt 

through the debug interface to the flash memory is blocked. Level 2 fully deactivates the debug interface. 

The attack presented by Schink et al. targets level 1. In the following, it is assumed that the microcontroller 

is in level 1. This assumption can be made as the authors of [88] also demonstrate how to downgrade from 

level 2 to 1. Thus a reactivation of the debug interface can be achieved. The attack that is reproduced here 

leverages that the read-out protection can always be disabled by changing the level to 0. Before the read-out 

protection is disabled, the device performs a mass erase in order to ensure that all sensitive content stored in 

the flash memory is erased. As described by the authors, the unlocking process consists of two phases. First, 

the flash content is erased and afterwards the read-out protection is deactivated. Schink et al. discovered 

that by injecting an electromagnetic fault into the first phase, the flash erase operation can be suppressed 

while the second phase is still executed. The attacker obtains a microcontroller with disabled read-out 

protection (level 0) and intact flash memory contents. 

The downside of this attack vector is that, if the attack does not succeed, the adversary loses the flash memory 

content irretrievably. If the adversary attempts to steal a specific device individual secret, the attack 

irrevocably failed. If, however, IP or other information that is redundant on all devices of a product series is 

the target of the attack, an adversary has as many tries as devices in their possession. In both scenarios, the 

reliability of this attack vector is important. Schink et al. state a success rate of 100 % for this attack. However, 

they do not provide the exact position of the fault injection coil but only a schematic of the chip package and 

the coil position. For EMFI, such parameters may have a high impact on the success rate of the attack. Small 

changes from the actual position can lead to failure of the attack. With the laboratory evaluation in this 

section, detailed findings on the necessary precision for this attack vector are reported for the first time. 

Further, it is evaluated whether other microcontrollers are susceptible to this attack vector. 

 

4.1.1 Laboratory setup and Results 

In order to reproduce the results of Schink et al., a similar laboratory setup with the same fault injection 

equipment, namely the ChipSHOUTER from NewAE and the included 4 mm CW injection coil, is used. All 
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experiments are performed on the STM32L422KBT, the same microcontroller that was used in the original 

publication. Figure 4.1 depicts a block diagram of the laboratory setup used for the evaluation within this 

report. 

The target microcontroller is mounted on a 3-axis position stage. With this, the injection coil can be 

positioned precisely on the device and an automated grid scan can be performed. To ensure that the target 

device is always in a defined state, a programmable power supply to power cycle the microcontroller is used. 

Power-cycling is applied before each measurement or for recovery, if the faulted microcontroller 

malfunctions. With the delay generator, it is ensured that the fault is injected at the right point in time. The 

generation of the trigger signal is explained in the next paragraph. A host PC controls the entire setup and 

instruments the target microcontroller via a debug probe. The laboratory setup is depicted in Figure 4.2. 

Figure 4.1: Block diagram of the laboratory setup to reproduce the flash erase suppression attack. 

Figure 4.2: Picture of the laboratory setup to reproduce the flash erase suppression attack. 
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To determine the right point in time for injecting the fault and suppressing the flash erase operation, Schink 

et al. use a measurement of the EM emanation during the RDP downgrade from level 1 to 0. This measurement 

is reproduced with the setup depicted in Figure 4.2. In order to generate a suitable trigger signal for the 

measurement of the EM emanation and the fault injection later on, a special firmware that is executed in the 

SRAM of the microcontroller is developed. If the device is in RDP level 1, this is within the adversary’s 

capabilities. The firmware raises a trigger signal on a GPIO pin of the microcontroller and subsequently starts 

the RDP unlock process. 

In Figure 4.3, the EM emanation during the RDP unlock operation is depicted. The red line indicates the 

trigger signal of the target device generated by the firmware. One can clearly identify the two blocks, a small 

block followed by a larger one, as depicted in the original publication. Even though the timing of the 

measurement is different, it is sufficient to calibrate the setup to reproduce the fault injection attack. 

According to Schink et al. the success rate is 100 % when the fault is injected at the beginning of the second 

block. From Figure 4.3 it can be seen that the fault needs to be injected at around 25 µs. This means that the 

trigger signal provided by the firmware must be delayed 20 µs (see the duration in Figure 4.3 between the red 

line and the start of the second distinct block in the signal). As mentioned before, a delay generator was 

integrated into the setup for this purpose. 

With the calibrated time for the fault injection, all necessary parameters provided by Schink et al. are 

present and the evaluation can be started. Schink et al. did not provide information such as the coil voltage 

and the pulse width. For the laboratory evaluation in this report, a coil voltage of 500 V and a pulse width of 

80 ns are used. The coil is placed directly on the chip package. The evaluation is started by manually 

positioning the injection coil around the area used in the original publication. This approach was supposed 

to lead to quick results but was not successful. In order to evaluate the susceptibility of the target device, a 

grid scan of the chip is performed. The chip has an LQFP-32 package with a dimension of 7 x 7 mm. For the 

grid scan, a step size of 0.1 mm, resulting in 4900 distinct locations for fault injection on the entire chip, was 

used. 

In Figure 4.4 the heatmap of the success rate to suppress the flash erase during an RDP unlock on the 

STM32L422KBT is depicted. The red dot in the top right corner indicates the package marking and thus the 

orientation of the chip. The success rate is calculated based on 40 measurements per position for the entire 

chip. Each measurement was performed individually, meaning that, before each individual fault injection 

measurement, the 3-axis stage was moved to the home position. This approach includes potential 

repeatability inaccuracies of the 3-axis stage into the results. 

Figure 4.3: EM emanation trace of the STM32L422KBT during an RDP downgrade to level 0. 
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With the grid scan over 400 locations with a success rate of 50 %, 12 locations with a success rate of over 90 % 

and three locations with a success rate of 100 % were identified. One of these three locations is in the small 

area on the bottom left corner of the chip. This location matches the schematic drawing of the original paper 

from Schink et al. and may be the position they used. With the same parameters, the attack was evaluated on 

multiple STM32L422KBT microcontrollers. When neglecting small differences which stem from inaccuracies 

due to, for example manual soldering of the chips, the same results were achieved. 

To conclude the evaluation, the question whether other microcontrollers are susceptible to this attack 

vector as well, is answered. As for the STM32L422KBT, first, the EM emanation during the RDP downgrade 

to level 0 is analyzed, to determine the delay for the fault injection. For the investigated microcontrollers, 

the flash erase operation could be suppressed as well. The preliminary results indicate that other 

microcontrollers are affected as well. However, more working time in the laboratory is necessary to 

generate reliable data for these devices. For this reason, we do not list the other affected devices in this 

document. A separate document with final and detailed information will be published after the affected 

manufacturers are informed as part of a coordinated vulnerability disclosure process. 

4.1.2 Conclusion and Future Work 

The laboratory evaluation of the flash erase suppression attack yields the following findings: 

 The attack can be reproduced on the STM32L422KBT. 

 The results so far show that this attack is very sensitive to the coil position. 

 Other microcontrollers are also susceptible to this attack vector. 

Figure 4.4: Success rate to suppress the flash erase operation on the STM32L422KBT. 
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The laboratory evaluation shows that the attack presented by Schink et al. can be mounted on different 

microcontrollers. Since a 100 % success rate with the current parameter set is hard to achieve, the attack 

may not be reliable enough for targets with unique device secrets. Small variations in the position of the 

injection coil can lead to a failure of the attack and an irretrievable loss of the assets. However, the results 

are already sufficient for attacks where multiple target devices are available, for example, devices with 

shared secrets such as common attestation keys or firmware containing IP. As the area with a 50 % success 

rate is quite large and contiguous, a coil can easily be positioned in this area. 

This attack vector needs to be considered and integrated in the threat model of existing and future products 

using COTS microcontrollers. Further, more investigation needs to be done since the parameter space is large 

and other parameters, such as the coil distance to the target or the coil type, may lead to higher success rates. 

Since this attack cannot be prevented completely, application specific mitigation techniques are necessary. 

For example, sensitive content stored in the flash memory should be encrypted and only decrypted on-the-

fly when needed. This countermeasure only makes sense if the cryptographic secret used for decryption is 

derived from user input. Otherwise, the cryptographic key is as easy to extract as the contents in flash memory 

it protects. However, such a user interaction cannot be implemented for all applications. The same holds for 

obfuscation-based mitigation techniques discussed in Section 3.3. 

 

4.2 Compiler-based Fault Injection Protection 

In Section 3.1, the threat of physical control flow attacks for microcontrollers was introduced. As a concrete 

example, the circumvention of the secure boot process on a microcontroller is shown. This attack allows an 

adversary to execute malicious code on the device. This section demonstrates this on MCUboot, a secure boot 

implementation for microcontrollers that is partially hardened against physical fault attacks. Compiler-based 

countermeasures can be used to automatically harden the complete code of such boot frameworks. Here, the 

adoption of such countermeasures to mitigate the attack is described. The obvious benefit of this 

countermeasure is that it can easily cover the complete application. This mitigates both straight-forward 

attacks such as skipping the verification procedure and algorithmic attacks on the cryptographic 

implementation as exploited for the attack described in this section. 

 

4.2.1 Attacking MCUboot’s RSA implementation 

MCUboot is a secure boot implementation for 32-bit microcontrollers. It uses an abstraction from the 

underlying hardware and borrows needed functionalities from the operating system, which is booted by it. 

In this example, the Zepyhr operating system is used in combination with MCUboot. 

To protect against physical hardware attacks, MCUboot applies general hardening against fault injection. 

Automated testing is available to evaluate the measures against the instruction skip fault model. Within 

these tests, the compiled binary is checked for the boot process’s outcome if several specific instructions are 

not executed. This ensures hardening against fault attacks, which target a skip of these instructions. Further 

measures to protect against data corruption can be enabled during compile time. For instance, masking of 

register values or adding random delays to induce jitter and reduce the likelihood of a precise fault attack. 

All measures are applied in the source code, and thus have to pass the compiler. Depending on the chosen 

compiler flags and enabled optimizations it may result in a weaker binary than anticipated in the source 

code. ARM evaluated this behavior and applied fixes to the compiler which avoid that it removes protective 

measures [1]. 

The discussed source code hardenings are not applied over the full implementation of MCUboot and its third-

party libraries. The developers’ rationale was to harden only the critical control flow, where a single fault 

would lead to compromise. At the same time they tried to keep the performance and memory overhead as 

small as possible. In Figure 4.5, the protective regions are symbolically shown. As the cryptographic 
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implementation was not hardened, its resilience against fault injection is evaluated. More precisely, the 

implementation of the RSA signature verification, which is used to verify the authenticity of a MCUboot boot 

image, is analyzed. It is unclear, whether this cryptographic implementation was not hardened as it would be 

too much effort, too much impact in the performance or, probably most unlikely, whether it was deemed 

uncritical. 

Recap of RSA algorithm. The RSA algorithm is an asymmetric cryptographic algorithm which can be used 

to create and verify digital signatures. It is based on the math of modular exponentiation. Its security 

argument relies on the hardness of decomposing a product into its two large prime factors. An RSA key pair 

consists of: 

 a private key with the private exponent d, and public modulus n, and 

 a public key with the public exponent e, and public modulus n. 

The following needs to hold for the private exponent d and the public exponent e: 

𝑒 ∗ 𝑑 (𝑚𝑜𝑑 𝜑(𝑛)) ≡ 1  (4.1) 

The private key is used to generate a digital signature s of a message msg with the help of a cryptographic hash 

function hash(·). First, the digest of the message is calculated with h = hash(msg), where h ∈ [0, n). Second, the 

signature is generated by: 

𝑠 = ℎ𝑑(𝑚𝑜𝑑 𝑛)  (4.2) 

If a verifier receives s and msg, and is in possession of the corresponding public key, they can verify the 

signature. First, the digest h is calculated, analogous to signing. Second, the signature is used to calculate a 

digest candidate h’  by: 

ℎ′ =  𝑠𝑒(𝑚𝑜𝑑 𝑛) (4.3) 

If the signature is correct, h and h’ are equal: 

ℎ′ = 𝑠𝑒(𝑚𝑜𝑑 𝑛) = (ℎ𝑑)𝑒(𝑚𝑜𝑑 𝑛) = ℎ  (4.4) 

Figure 4.5:  Regions of FI hardening in MCUboot. 
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Please note, that for a complete RSA signature verification, padding is required, which is neglected in this 

example. 

Attack on RSA implementation. In MCUboot, the cryptographic operations are provided by mbedTLS. For 

this work, the implementation of the modular exponentiation mod n is most relevant. The mbedTLS library 

efficiently computes it by applying the square-and-multiply algorithm. Within this algorithm each bit of the 

exponent is evaluated individually starting from the leftmost bit (most significant bit) to the rightmost (least 

significant bit). On the implementation level, this is a loop, which seems suitable for the evaluation of fault 

injection. For example, a fault can be applied to force an early return of the algorithm. In Listing 4.1 simplified 

pseudo-code of the modular exponentiation implementation is listed. Additionally, the targeted effect of the 

fault is added and highlighted in red. 

Depending on the implementation, an early return would, in the best case, result in a public exponent e = 1 

during the signature verification. As a consequence, it follows that d = 1 is assumed valid as well, as Equation 

(4.1) holds. This allows an attacker to generate a malicious key pair with da = 1, ea = 1, and the public exponent 

n of the targeted key pair. From the malicious key pair, a valid signature sa for a message msga can be created. 

By applying the fault, the verifier can be tricked into accepting msga and sa as valid, even if they are not valid 

for the actual key pair with exponents d and e. To attack MCUboot, a malicious application is signed using a 

malicious key pair with the private exponent da = 1. The MCUboot image is in possession of a validly generated 

public key consisting of e and n. As described above, a fault is used to enforce e = ea = 1 and therefore booting 

the malicious application. 

4.2.2 Compiler-based hardening of MCUboot 

As stated in Section 3.1, redundant computation as implemented in [90] is deemed a promising approach to 

mitigate corruption through fault attacks. In [91], the approach from [90] and other works 

[29],[30],[73],[74],[81],[97] were integrated into the LLVM compiler for RISC-V architectures. Therefore, the 

countermeasure can be integrated at compile time, arguably the most convenient and safest method for 

software developers. This work is adapted for the evaluation in this report. 

A short overview of software hardening techniques. Over the past years, researchers have tried to achieve 

good trade-offs between error resilience and performance overhead of software hardening techniques. It is 

important to note that these works were driven by the safety and not the security domain. In simple words, 

approaches to counter control flow corruption [73],[97] continually maintain a signature register which is 

updated for each block of instructions. For every transition between blocks, a signature check is performed, 

function exponentiation(base, exponent) 

result = 1 

for bit in exponent: 

result *= result 

if bit == 1 

result *= base 

return result 

return result 

Listing 4.1: Simplified square-and-multiply algorithm. The effect of the fault is included in the pseudo-code and 

highlighted in red. 



4 Laboratory Evaluation 

 

30  Federal Office for Information Security 

which detects illegal transitions. Approaches to counter data flow corruption [29][30],[74],[81],[90] build on 

redundant execution. The available CPU registers are divided into a set of primary registers and a set of 

shadow registers. Every instruction operating on primary registers is duplicated with the respective shadow 

registers. Any mismatch within a register pair implies illegal tampering or operation under hazardous 

environmental conditions. The listed works differ in their handling of memory accesses and instructions 

that influence the program flow, therefore they also differ in their respective performance and code size 

overhead. Most notably, NZDC + NEMESIS [29],[30] is the state-of-the-art in classical data flow protection. In 

[90], the authors show that a dynamic mapping between primary and shadow registers allows to detect a 

high percentage of control flow corruptions. All these works assume an ECC memory. As stated in Section 

3.1, protecting data with simple encodings is proposed for further evaluations if such a memory is not 

available. 

The program flow in Figure 4.6 demonstrates how the redundant execution works on assembly level. The 

duplication of basic arithmetic instructions is straightforward. Conditional branches are protected by doing 

separate branches on the condition applied to the primary registers and the shadow registers. In total, there 

are four possible outcomes for a condition. However, only two outcomes are legal and allow the program to 

continue. 

Implementation. Internally, the compiler presented in [91] uses the NZDC + NEMESIS approach shown in [29] 

for duplication and then applies the transformations of [90] on top of it. Therefore, [29] is the focus for 

laboratory evaluations within this report. In [91], a so called backend function pass is added to the LLVM 

compiler to harden code. The backend is responsible for translating LLVM’s intermediate representation into 

machine code. Inserting instructions for redundant execution in the last backend function pass ensures that 

all memory accesses and branches are protected, as the compiler may reorder blocks and insert additional 

load/stores in early backend function passes. Unfortunately, it also means that the code by Sharif et al. [91] 

highly depends on the target machine. In their work, only RISC-V architectures are supported. The market 

analysis in Chapter 2 showed that no RISC-V microcontrollers are present in the relevant product categories. 

In contrast, ARM Cortex-M microcontrollers are used a lot throughout the different products. 

Therefore, the work from [91] was ported for the ARM architecture, more precisely the Thumb ISA, focusing 

efforts mainly on the implementation of NZDC + NEMESIS [29]. Due to differences in the RISC-V and Thumb 

instruction sets, this is not straightforward. The proof of concept implementation created for this report 

Figure 4.6: Examples for redundant execution of arithmetic (a) and conditional (b) code. 
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managed to automatically protect the relevant methods of mbedTLS (see next paragraph) with the concept of 

[29]. Due to time constraints, the extension of [90] and other countermeasures could not be realized. To 

demonstrate the cost of using the compiler extension, a short evaluation of two simple benchmark programs 

and the relevant mbedTLS method was conducted. Table 4.1 shows that the code size increases by factor 2 to 

5 and the cycle count by factor 3 to 4. The exact overhead depends heavily on the application. As shown in 

Figure 4.6, a sequence of arithmetic instructions can be protected with straightforward duplication, whereas 

branches require more sophisticated approaches which imply a higher overhead. The same holds for memory 

accesses and function calls. It is expected that the compiler extension can be optimized to lower the overhead, 

however, a vendor will always have to accept code size and cycle count overheads somewhere between factor 

2 to 3. It should also be emphasized that further modifications are necessary to improve the usability of the 

proof of concept implementation and to extend it to other ISAs. 

 

Table 4.1: Overhead comparison of the implemented redundant execution countermeasure for different benchmark 

programs, compiled for the ARM Cortex-M4 (−O2, clang version 13.0.0). 

Program Protection Level Code Size Cycle Count 

CRC1 Without protection 

With protection 

1,344 Byte 

3,448 Byte 

370 

860 

fibonacci2 Without protection 

With protection 

92 Byte 

516 Byte 

440 

1,690 

mbedTLS modular 

exponentiation3 

Without protection 

With protection 

1,962 Byte 

7,006 Byte 

11,870,350 

42,646,750 

 

Mitigating the RSA attack. The previous section showed how skipping a single instruction is sufficient to 

enforce a public exponent e = ea = 1 during signature verification. When analyzing the branch protection in 

Figure 4.6, it is obvious that one single instruction skip is no longer sufficient for a successful attack. Either 

two precise skips of single instructions or one skip of at least three instructions are required. If an adversary 

can realize such attacks, even the extension from [29] to [90] offers no sufficient protection. It only makes a 

fault detection more likely in the realistic case that the number of skipped instructions cannot be controlled 

perfectly. However, for perfect protection against such attacks, an integration of control flow corruption 

countermeasures like [73],[97] would be necessary. Also, software countermeasures are not suitable to fully 

protect against attacks which introduce faults directly into the PC register. 

 

4.2.3 Laboratory Setup and Results 

The attack is evaluated on an electromagnetic fault injection setup. A setup similar to the one shown in Figure 

4.1 can be used. The only difference is that an oscilloscope is necessary to analyze the electromagnetic 

emanation and create a trigger dependent on its waveform. The target device is an ARM Cortex-M4 

microcontroller running MCUboot with a Zephyr application. Before the actual attack, different parameters 

to achieve an instruction skip on the chip were investigated. For this, a grid scan similar to the one described 

in Section 4.1.1 but with a higher resolution of 0.01 mm was performed. An area of 0.14 x 0.04 mm where an 

instruction skip could be introduced repeatedly was identified. In some subregions of this area, a probability 

higher than 90 % was achieved. Such a subregion of 9 locations in an area of 0.03 x 0.03 mm was used for the 

investigation of the MCUboot attack. The used pulse was generated with a delay generator with a fixed pulse 

width of 100 ns. 

                                                                 
1 https://vhosts.eecs.umich.edu/mibench/ 
2 https://github.com/fharookshaik/fibonacci-series 
3 https://github.com/Mbed-TLS/mbedtls 

https://vhosts.eecs.umich.edu/mibench/
https://github.com/fharookshaik/fibonacci-series
https://github.com/Mbed-TLS/mbedtls
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For the MCUboot attack, the malicious application is signed as described above. To identify the current state 

of MCUboot, the electromagnetic emanation is recorded and evaluated in real-time with the oscilloscope. 

Figure 4.7 shows the EM traces for the three different scenarios of a valid image in Figure 4.7 a), an invalid 

image in Figure 4.7 b), and an invalid image with a simulated fault in Figure 4.7 c). The waveform of the 

modular exponentiation algorithm can be distinguished from other operations. By comparison of Figure 4.7 

c) which includes a simulated fault in its implementation the early return and thus the shorted execution time 

is visible. Further, the handling of each bit is highlighted as the MCUboot implementation was modified to 

toggle an output. For the attack the side-channel information, without a toggling output, can be used as a 

trigger to precisely inject the fault into the modular exponentiation. This allows to minimize the jitter of 

imperfect attacks due to inserting the fault too early or too late. The laboratory evaluation showed that a 

success rate for the attacker of one third can be achieved with such a setup. Hence, one out of three fault 

attacks results in MCUboot accepting the malicious signature and booting the malicious application. This 

demonstrates that the secure boot protection feature can be circumvented, and any application can be booted. 

 

If MCUboot is hardened with compiler-based redundant execution as described above, the probability of a 

successful attack reduces drastically. For this evaluation, an artificial trigger is used, i.e. the target pulls up a 

trigger pin when it is at the critical operation, to model the absolute best case for an attacker. As discussed 

above, MCUboot was compiled with the data flow protection scheme NZDC + NEMESIS [29],[30]. Realizing 

Figure 4.7: EM emanation trace of the ARM Cortex-M4 during MCUboot with RSA signature verification. 
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advanced approaches for data flow protection [90], control flow protection schemes [73],[97], and the 

encoded memory transfers proposed in this report are left open for future work. For over 10,000 tries, it was 

observed that the attacker could boot a malicious software six times, despite the protection by the compiler. 

The only possible explanation for this behavior is that the introduced fault does not comply with a single 

instruction skip fault model. Therefore, we fall back on two more general fault models for this analysis. 

In the first model, the adversary skips an arbitrary number of instructions, but stays in the method performing 

the sliding window exponentiation. It was verified that the six experiments for which the adversary could 

boot malicious software complied with this model, as the sliding window exponentiation went through the 

expected return path. An investigation of the sliding window exponentiation’s assembly code yielded, that 

the attacker needs to skip at least thirteen instructions. Additionally, the attacker needs to jump to a point, 

where the primary and shadow registers are in sync, i.e. not jump in between a shadow and a primary 

instruction. While such fault effects are rare, the laboratory evaluation demonstrates that they could be a 

realistic threat to implementations. However, control flow schemes such as [73],[97] mitigate this effect 

completely, as all illegal jumps between basic blocks are detected. As described earlier in this report, the 

proposal of [90] would provide no perfect protection against this fault model. Therefore, an adoption of 

control flow protection schemes for compilers such as the one used in this report is highly recommended. 

The second model includes all cases where the fault manipulates the program counter such that the sliding 

window exponentiation method is left directly. This behavior was observed for 50 experiments. It never led 

to a valid boot, due to the program counter hanging at invalid locations without valid instructions. However, 

there exists a probability that the program counter points to the application after the fault. The attacker can 

also design the application’s memory region as a slide, where dummy instructions are utilized such that the 

program counter slides to an entry point. It should be emphasized, that software-based countermeasures 

cannot offer a complete mitigation of direct program counter manipulations. The conducted experiments 

show that the probability that a fault leads to a jump into a region with code controlled by the adversary is 

not negligible. To encounter such attacks distinct hardware countermeasures need to be applied. This is an 

open task and requires further research. It is left open for future work. 

For the majority of observed faults (~ 99.4%), the attack ended in an error handler, either the system’s own 

error handler or one introduced by the compiler for detection of faults. 

 

4.2.4 Conclusion and Future Work 

The laboratory evaluation of control-flow attacks against secure boot yields two core findings: 

1. If a fault attacker with the ability to skip single instructions is within the threat model, it is not 
sufficient to only harden the “high-level” control flow. 

2. Software-based fault detection countermeasures can be applied conveniently during compile time 
and raise the bar for a successful attack significantly. 

 

For both points there is potential as well as the necessity for future research. 

Generic fault vulnerability analysis. Enforcing a public exponent e = ea = 1 during RSA’s signature verification 

is only one example of exploiting behavior that occurs if a cryptographic algorithm is brought to act outside 

of its standardized value range. Depending on the use case, other attack points for RSA can be expected to 

arise. Also, other cryptographic standards such as ECC can be expected to be vulnerable to similar attacks. The 

safest way to mitigate all possible attacks is to protect every piece of code. However, this implies a large 

overhead of code size and execution time. If a routine is hardened only partially, the developer needs support 

of analysis/ verification tools to make a reasonable statement on the security of the implementation. 

Improved compiler-based hardening. The developed proof of concept implementation of a data flow 

protection scheme for ARM microcontrollers in the LLVM compiler demonstrates how valuable such a tool 



4 Laboratory Evaluation 

 

34  Federal Office for Information Security 

can be to conveniently retrofit protection against physical attacks. As mentioned earlier in this report, 

signature checks and encoded memory transfers could further enhance this compiler. Additionally, there is a 

significant value in making the compiler feature less dependent on the target platform. Otherwise, the 

compiler needs to be almost completely rewritten for every instruction set architecture, as done for this 

report. While some protections can not be applied until the end of the compilation process, the foundation 

for protection as well as necessary data dependencies can be created in a generic intermediate representation. 

For such an implementation it is necessary to understand the differences of instruction set architectures 

regarding features that modify the program flow (e.g. architectures with and without conditional flag 

registers). An extensive study on this is still missing in literature. First observations were collected during the 

investigations within this report. 
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5 Conclusion 

Microcontrollers constitute the backbone of a smart and connected world. Resilience against hardware 

attacks is required for numerous applications to protect critical infrastructure, intellectual property, and 

sensitive information. While this fact is hardly ever challenged, different stakeholders draw different 

conclusions from it. On the one side, vendors of COTS microcontrollers view hardware attacks as out of 

scope for their devices. On the other side, product vendors build security-related products from these 

microcontrollers. The market analysis in this report has shown exactly that for hardware security tokens, 

hardware crypto wallets, smart locks, and POS terminals. Products that fall into one of those categories are 

often based on COTS microcontrollers. Only recently, countermeasures against hardware attacks have been 

considered for integration by some vendors. According to the conducted market analysis, microcontrollers 

that have dedicated countermeasures in place and were certified to withstand certain attacks identified in 

this report [2] do not play a role for manufacturers of the listed product categories. 

Attacks on COTS microcontrollers are frequently shown in state-of-the-art hardware security research. 

Within this report, two of three reviewed attack classes were evaluated in practice: control flow manipulation, 

and read-out protection bypass attacks. To demonstrate these attacks, it was shown how an adversary is able 

to bypass the read-out protection on different microcontrollers in Section 4.1 and how the control flow of a 

protected secure boot implementation can be tampered in Section 4.2. For side-channel attacks, this report 

refers to existing research [82],[88] and proposes valuable evaluations for future work. All three attacks can 

potentially lead to a theft of cryptographic secrets in an evil maid or theft scenario. The distinguishing factor 

of those two scenarios is the time and equipment an adversary has at hand, since the theft scenario implies 

that the device is not returned to the victim. However, it depends on the application whether it makes sense 

for an adversary to choose a theft attack over an evil maid attack. Supply chain attacks are mostly realized 

with control flow manipulation and read-out attacks, although side-channel information can be exploited as 

well. An adversary who wants to steal IP can take advantage of all three attacks. IP theft usually implies more 

capabilities in relation to time and equipment, similar to the device theft scenario. 

The attacks that were demonstrated in this report are expected to be practically feasible on almost all 

microcontrollers reported in our market analysis. This implies that products built upon these 

microcontrollers must have dedicated countermeasures in place. For all three attack classes, researchers 

proposed various countermeasures to mitigate or impede the attacks. This report evaluated efficient and 

low-cost software countermeasures, as these can be retrofitted to existing products. 

To counteract control flow manipulations, a proof-of-concept compiler-based countermeasure built on 

existing error detection schemes was demonstrated. For attacks on read-out protections, this report 

established that no universal countermeasure that can be integrated by means of software exists. However, 

depending on the microcontroller and the application, software-based countermeasures may impede the 

effect of such an attack and thus provide a sufficient level of protection. The topic of side-channel attacks was 

not practically evaluated in this report, but an evaluation of masked software implementations in face of 

microcontrollers with low physical noise was proposed for future work. Alternatively, the approach of 

retrofitting new leakage resilient cryptography schemes [31] similar to the demonstration in [96] is proposed. 

The work conducted in this report demonstrates the difficult situation, developers of products built from 

COTS microcontrollers find themselves in. For one, being able to judge the threat of hardware attacks to every 

little implementation detail can not be expected from every embedded developer. Second, vendors of COTS 

microcontrollers hardly provide any support regarding hardware security, e.g. by listing possible threats or 

providing hardware security features. Third and last, time and budget constraints often seem to prevent a 

thorough review process that includes a hardware security perspective. Unfortunately, this report showed 

that such a review, conducted by professionals in the field of hardware security, is indispensable. 

This report showed that there are efforts that automate the application of certain countermeasures. For 

example, control flow manipulations can be mitigated with compiler features as demonstrated in the 
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practical evaluation. However, the compiler features are not mature enough for adoption by industry and 

even if they were, their overhead regarding code size and performance is immense. Developers might be 

tempted to harden only certain parts of an implementation, but this report established that an expert is 

needed to identify all critical parts of an implementation. A similar statement can be made on the application 

of masking to harden a device against power/ EM side-channel attacks. While tooling and code for masked 

ciphers exist, factors like the noise level of a microcontroller need to be considered. For attacks on the read-

out protection of microcontrollers, no straightforward countermeasure which can be applied by means of 

automatic tooling was identified. Countermeasures rather need to be implemented on application level to 

achieve sufficient mitigation of such attacks. 

This report appeals to three interest groups to change this unsatisfying situation: 

The research community needs to do more to improve tooling for software-based countermeasures in 

terms of practicability and usability for embedded developers. 

Microcontroller vendors should provide threat models with respect to hardware attacks for their products 

to ease product selection for security-related tasks. This gives developers a basis to make decisions on 

whether a product is suitable to process or store sensitive information in the presence of hardware attacks. 

Finally, the third group represents consumers and legislative authorities. This group should create an 

economic incentive to integrate countermeasures against hardware attacks such that they are considered 

inalienable for certain use cases. For some areas this incentive may be supported, for example, by regulatory 

measures providing technical guidelines or recommendations. 
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