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Executive Summary

Using cloud services has become main stream and many companies use cloud resources either to
provide cloud-based applications or to outsource parts of their internal infrastructure. Yet, using
these external services poses critical questions regarding a company’s compliance with internal and
regulatory requirements.

Naturally, the obvious remedy lies in conducting necessary audits of cloud-based applications to
check whether they comply with critical requirements. However, especially with complex cloud-
based applications, such audits are time-consuming and costly. Furthermore, when considering dy-
namic changes inherent to cloud environments, frequently auditing those applications is inevitable,
making compliance checks even harder and more expensive.

So the central question is: How to leverage the benefits of cloud resources while ensuring compli-
ance with critical requirements in an efficient way? The answer is provided by continuous cloud
assurance, an approach to automatically and repeatedly check whether a cloud-based service be-
haves as expected.

The Clouditor enables continuous cloud assurance. It is a set of tools which supports the design
and deployment of continuous assurance techniques. The core features of the Clouditor are:

Continuous assurance It continuously, i.e. automatically and repeatedly tests, if a cloud-based
application complies with critical requirements.

Minimal invasiveness Conducting continuous compliance checks requires no changes to the
structure of the service.

Adaptiveness Dynamic reconfiguration according to changes of the cloud-based applications.

High accuracy Prior to deployment, alternative assurance techniques and their respective config-
uration are evaluated and compared to select the most suitable ones.

Low overhead Continuous tests are executed in a way that avoids incurring unnecessary over-
head while retaining required accuracy of results.

The Clouditor prototype is currently developed and deployed within the cloud lab environment of
Fraunhofer AISEC. Several exemplary scenarios have been implemented to continuously validate
the compliance of cloud-based applications according to requirements, such as:

• Cloud resource location and deployment (e.g. only use cloud resources within EU),

• cloud resource availability and provisioning (e.g. of virtual machines),

• security configurations (e.g. firewalls, security groups, and user management), and

• non-existence of known security vulnerability (e.g. in web application components).
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1 Introduction

Using and providing cloud-based services entails certain risks. The most prominent ones are security-
related [1] but using cloud services involves further risks, such as legal risks, privacy risks, and risks
of violating defined business processes. According to an empirical study conducted by the Cloud
Security Alliance (CSA) [9], the top three threats to cloud services are:

• Insecure interfaces and APIs,

• data loss and leakage, and

• hardware failure.

This leads to the question how to control these risks, that is, how to unfold potential risks of
using cloud services while ensuring that a cloud-based application complies with individual require-
ments?

Assurance techniques provide answers to this question: These techniques check if a service adheres
to a specific set of requirements, thus ensuring that it behaves as expected. However, attributes of
a complex application or service may change over time and these changes may be hard to predict
or detect. Examples for such changes are:

• Configuration changes,

• patches and upgrades applied to individual components, and

• location changes, i.e. the data center used by a cloud provider for service delivery may vary
over time.

Applying assurance techniques to cloud services therefore requires an approach capable of contin-
uously, i.e. automatically and repeatedly detecting ongoing changes and assessing their impact on
requirements. Bridging this gap, we present Clouditor, a dynamic test tool to enable continuous
assurance of cloud resources and cloud-based applications.

The remainder of this document is structured as follows: After having provided an overview of the
Clouditor toolbox (Section 2), main concepts of the test-based assurance techniques are detailed
in Section 3. Thereafter, it is outlined how – prior to deployment – performance of test-based
assurance techniques can be evaluated and alternative techniques can be compared. Finally, exem-
plary scenarios are presented on how the Clouditor can be used to continuously check whether a
cloud-based application adheres to a specific set of requirements.
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2 Clouditor Toolbox

The Clouditor toolbox consists of five main components which are shown in Figure 2.1. The Engine
and the Explorer are responsible for continuously executing and adapting assurance techniques.
The Simulator and the Evaluator are used prior to deployment; they serve to select techniques
and respective configurations which are most suitable to check if a cloud service complies with
a particular set of requirements. Lastly, the components can be viewed and configured from a
Dashboard. Each component is designed as a micro-service and can be deployed in an individual
container.

Clouditor Toolbox

continuous 
validation

performance 
evaluation

Clouditor
Engine

Clouditor
Explorer

Clouditor
Simulator

Clouditor
Evaluator

Clouditor
Dashboard

Figure 2.1: Tools of the Clouditor Ecosystem

Clouditor Engine The Engine continuously executes a defined set of tests to check whether a
cloud service complies with a set of requirements and reports its results. Controlled input is provided
to the cloud service and the returned output is evaluated, e.g. calling a cloud service’s RESTful API
and comparing responses with expected results. Parameters of the tests and their execution, i.e.
the interval between tests, are configurable.

Clouditor Explorer The Explorer is responsible for automatically discovering a cloud service’s
composition, e.g. via an exposed API that can be utilized for continuous assurance. Furthermore,
cloud services are subject to ongoing changes which may affect operation of continuous assur-
ance techniques. The explorer detects changes of the cloud service and adapts configurations of
continuous assurance techniques accordingly.

Trust in results of continuous assurance techniques hinges on their accuracy: How close are pro-
duced results to their true values? Answering this question, the Clouditor provides suitable tooling
to evaluate how well a particular continuous assurance techniques performs. This evaluation is
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conducted prior to productive deployment of assurance techniques. By evaluating and compar-
ing alternative assurance techniques as well as their configurations, the most suitable ones can be
selected. More details on this pre-deployment phase can be found in Section 4.

Clouditor Simulator The Simulator manipulates a cloud-based application to mock dissatisfying
requirements, e.g. publicly expose sensitive interfaces to mimic violations of security configurations,
which a specific assurance technique aims to detect. Simulation happens prior to productive deploy-
ment of assurance techniques, for example, during integration testing or staging of the cloud-based
application. The Simulator thus establishes the ground truth to which results produced by a specific
continuous assurance technique are compared.

Clouditor Evaluator The Evaluator compares simulated, dissatisfied requirements with the re-
sults of the assurance techniques. This allows to reason about the performance of a particular
assurance technique and to compare it to alternative techniques. Moreover, using methods of in-
ferential statistics, general statements about the performance of a particular assurance technique
can be derived.

Lastly, the visualization of results is an important step in detecting and forecasting potential viola-
tions of compliance requirements.

Clouditor Dashboard The Dashboard uses information gathered by the other components to
visualize the results of continuous testing. Depending on the executed tests and their associated
metrics, different visualization components, such as time series graphs, burn-up charts or maps are
used.
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3 Continuous Validation

Requirements derived from CSA’s Cloud Control Matrix (CCM) [5] or NIST SP 800-53 [6] are generic
and often inherently ambiguous, making automatic validation infeasible. Thus supporting contin-
uously checking compliance of a cloud-based application requires to extract underlying properties
which can be automatically tested, thereby bridging the semantic gap.

Reasoning about properties of a cloud service requires collecting and evaluating evidence, i.e. ob-
servable information of the service, e.g. monitoring data, log files or source code. Test-based
assurance techniques produce evidence by controlling some input to the cloud-based resource and
evaluating the output.

The following section outlines the main elements of the Clouditor Engine which supports test-based,
continuous cloud assurance. Thereafter, the Clouditor Explorer is described which is responsible for
service discovery and automatic (re-)configuration (see Section 3.2).

3.1 Clouditor Engine

The Clouditor Engine implements and deploys test-based assurance techniques. It consists of test
suites which comprise test cases, workflows which model dependencies between test suites, and
metrics which are used to reason about the results of test suites. Figure 3.1 shows a high level
architecture of the Clouditor Engine’s components, including data and control flow.

Test cases Test cases form the primitive of any test; they implement any steps executed during
the test, e.g. first establish an SSH connection to a virtual machine, then execute a command to
download and install a package on the VM. A test case possesses a set of initialization parameters:
For example, connecting to a VM via SSH may require username, hostname, and a path to a
keyfile. Further, each test case possesses assert parameters specifying expected results, e.g. the
returned values of the test case have to equal a particular string. Multiple test cases can be executed
concurrently or successively.

Test suites Test suites combine test cases, in which each suite must contain at least one test case.
A test suite only passes if all contained test cases pass. Execution of a test suite can be triggered
multiple times, possibly set to infinity. The current iteration of a test suite has to be completed, i.e.
all test cases bound to the test suite have to be completed, in order for the following iteration to
start. The interval between consecutive iterations of a test suite can be fixed, e.g. ten minutes after
the previous test suite execution has completed, or the interval can serve as a window from which
the start of its next execution is selected randomly.
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3.1 Clouditor Engine

Clouditor Engine

TestSuite

TestCase Metric

call

Test Tool

<< test result >>

<<  test result >>

test

Cloud-based application under test (CAUT)

<< test result >>

control flow

data flow

<< * >> data

Figure 3.1: Overview of Clouditor Engine main components (with external test tool)

Workflows A workflow represents dependencies between iterations of different test suites. To
that end, a workflow controls executions of test suites based on their results. As a basic example,
suppose that after having successfully completed a number of iteration, a test suite run fails. The
workflow defines how to handle this failure, e.g. whether to continue running the test suite for
the remaining iterations, to terminate the test or start another test suite.

Test metrics Automatically evaluating statements over cloud services properties, e.g. the avail-
ability of the service needs to be higher than 99.999% per year, requires one final construct: Met-
rics. A metric takes the results of test suite runs as input, performs a specified computation and
returns the result. To that end, a metric can use any information available from the result of a
test suite run, e.g. at what time the test suite run was triggered, when it finished, and further
information contained in the results of test case runs bound to the test suite run.

Preconditions Naively executing tests is prone to false positives, e.g. testing a webserver’s TLS
configuration may fail, not because of a vulnerable configuration but because the webserver can-
not be reached. Computing metrics based on such a test suite will further increase their error. Thus
assumptions made about the environment of the cloud-based application under test, i.e. precondi-
tions, need to be tested as well.
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3 Continuous Validation

3.2 Clouditor Explorer

Discovering interfaces of cloud-based applications and configuring the selected assurance tech-
nique is the task of the Clouditor Explorer.

Service Discovery In order to determine which assurance techniques can be utilized to check
compliance of a specific cloud-based application, it is necessary to discover the application’s com-
position and interfaces. To that end, designated service description APIs, inventory management
systems as well as test-based discovery techniques can be used.

Naturally, the level of detail of the obtained service description depends on the privilege level
granted to service discovery. If, for example, the assurance techniques will have identical access
privileges as a regular user of the application, then only publicly available interface will be accessi-
ble to service discovery.

Configuration Generation Based on the service description which is provided by service discov-
ery, candidate assurance techniques are proposed. Depending on the required compliance checks,
that is, the requirement set which has to be validated continuously, corresponding assurance tech-
niques are selected. For each selected technique, configurations are generated which are used by
the Clouditor Engine to deploy test-based assurance techniques accordingly.

Configuration Adaption A cloud-based application may change during deployment, e.g. addi-
tional instances are launched due to increased load. Such changes can be detected by the Clouditor
Explorer and deployed assurance techniques are reconfigured accordingly.
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4 Performance Evaluation

The accuracy of results which are produced by test-based assurance techniques depends on var-
ious factors, e.g. test implementation, test environment, usage of external tools, etc. Without
experimental evaluation, it is thus hard to make a statement about how well a specific continuous
assurance technique detects compliance requirements violations.

Figure 4.1 shows the main components involved in performance evaluation. In order to evaluate
test-based assurance techniques, it is assumed that correct results and errors of the assurance tech-
nique follow some unknown distributions. We take samples from these unknown distributions by
running experiments which simulate violations of compliance requirements. By applying methods
of statistical inference to these experimental results, it is possible to make statements about the
general performance of the test-based technique under evaluation.

Clouditor Engine

control flow

data flow

<< * >> data

Simulator

TestSuite

TestCase

Metric

<< test result >>

<<  test result >>

call

Cloud-based 
application 

under 
test 

(CAUT)

Test 
Tool

test

<< test result >> simulate

Figure 4.1: Overview of performance evaluation using the Clouditor toolbox

4.1 Clouditor Simulator

A simulation manipulates a cloud service under test to mock violations of compliance requirements
which a specific test-based assurance technique aims to detect. Thus simulations are essential to
establish the ground truth to which results produced by assurance techniques are compared.

The design of a simulation is driven by the requirements that should be tested. For example, a
simulation may start and stop virtual machines to simulate violations of availability requirements,
publicly expose sensitive interfaces to mimic violations of secure configuration requirements, or
limiting bandwidth to simulate violations of quality of service requirements.
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4 Performance Evaluation

4.2 Clouditor Evaluator

The Evaluator compares simulated violations of compliance requirements with results produced by
assurance techniques under evaluation. It computes different performance measures which allow to
reason about how well a specific test-based technique works in detecting violations of compliance
requirements.

Selecting suitable performance measures to evaluate and compare alternative test-based assurance
techniques depends on the compliance requirement that the assurance technique aims to validate.
Consider for example the performance of continuously testing a requirement that a cloud-based
application should not to be accessible through some blacklisted ports. Here, the accuracy of the
test-based technique can be described by simply counting correct results, given that the test-based
technique correctly indicates a violation of the requirement. As another example, consider the
requirement The average time to fix critical security vulnerabilities should not exceed eight hours.
In this case, the performance of the test-based techniques depends on its ability to approximate
singular intervals during which the requirement is violated.

12 Fraunhofer AISEC
Clouditor



5 Exemplary Scenarios

This section presents five exemplary scenarios on how the Clouditor can be used to check if a
cloud-based application complies with a specific set of requirements. Within all the scenarios de-
scribed hereafter the Clouditor’s deployment is minimally invasive, that is, the Clouditor is deployed
externally to the infrastructure of the cloud-based application; thus requiring no changes to the
application’s components.

5.1 Resource Location

The Clouditor can be used to continuously validate the location of cloud resources. This allows
to check requirements which define that used cloud resources shall only be located within certain
geographical boundaries. Such requirements may stem from

• national privacy regulations,

• a company’s internal data protection guidelines, or

• individual contractual obligations.

The test-based technique firstly collects network information through interaction with a cloud re-
source used by the application. Machine learning models are used to learn the characteristics of a
particular cloud resource. Using these models, the test-based technique can continuously validate
a cloud resource’s location (LocationTest). The test will fail in case the cloud resource has migrated
to a different data center, located in a different geographical area.

Based on the results of LocationTest, metrics can be computed which allow to for instance count
how many times a cloud resource’s location was invalid and how long this compliance requirement
was valid.

5.2 Service Availability

This scenario describes how the Clouditor can be used to continuously validate compliance re-
quirements related to service availability and provisioning, for example, the application should be
available at least 99.999% per year. Such requirements can, for instance be derived from

• Control SC-6 Resource Availability of NIST SP 800-53 [6],

• IVS-04 of the Cloud Control Matrix (CCM) upon which the CSA certificate is based [4], or

• Section 6.3.7 Resource Provisioning of ENISA IAF [2].
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5 Exemplary Scenarios

Consider the following, alternative test-based techniques: The first possibility is PingTest which
simply sends ICMP messages to publicly reachable interfaces and verifies that the returned round
trip time (RRT ) does not exceed a given threshold on average and standard deviation. A second
possible technique uses TCP packets to determine whether the application is available (TCPTest).
Similar to PingTest, for a test to pass, thresholds for the maximum average response time and the
maximum response time of probes need to be defined which are not to be exceeded. The third
possibility is SSHTest which tries to connect to a component of the application via SSH and then
test the session.

Each of the exemplary test-based techniques described above can be used individually or combined.
In the latter case, PingTest, TCPTest, and SSHTest are executed concurrently at each iteration, and
only if all pass, the test passes. Based on the result of these test-based techniques, different metrics
can be computed. These metrics allow to reason about the availability of a cloud resource.

5.3 Security Configuration

In this scenario, requirements related to secure communication and configuration are continuously
validated. Such requirements may stem from

• Section 6.4.5 Encryption of ENISA IAF [2],

• SC-8 Transmission Confidentiality and Integrity of NIST SP 800-53 [6], or

• IVS-04: Infrastructure & Virtualization Security Information System Documentation of the
CCM [5].

Consider the following two exemplary test-based techniques: One of them tests if data transferred
to the cloud-based application is vulnerable during transit. The other one tests if the cloud-based
application exposes vulnerable interfaces. Regarding secure communications, the TLS configura-
tion of the cloud-based application is analyzed to identify weak cipher suites (TLSTest). To detect
vulnerable interfaces, reachable network ports of the application (PortTest) are discovered.

Using the results of TLSTest and PortTest, different metrics can be derived, e.g. how many times
configurations of interfaces and communication were vulnerable and how long it took to fix these
vulnerabilities.

5.4 Input Validation

In the last example scenario, the Clouditor checks compliance with security requirements derived
from, e.g.,

• SI-10 Information Input Validation, and RA-5 Vulnerability Scanning of NIST SP 800-53 [6],

• Section 6.3.1. Software Assurance, and 6.3.6. SAAS – Application Security of ENISA IAF [2],

• controls A.9.4.1: Information access restriction and A.12.6.1 Management of technical vul-
nerabilities of ISO/IEC 27001:2013 [7], or
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5.5 Code Quality Gate Satisfaction

• AIS-01: Application Security and TVM-02: Vulnerability & Patch Management of the Cloud
Control Matrix (CCM) [5].

Cloud-based applications following a Software-as-a-Service (SaaS) model usually make heavy use of
web application technologies. The Open Web Application Security Project (OWASP) has classified
the top 10 categories of vulnerabilities found in web applications based on their occurrence. Within
that classification, injection attacks are on top of the list, a broad term which refers to different
types of attacks such as SQL, OS commands and LDAP injection. Among all types of injection, SQL
injection (SQLI) is the most common type of vulnerabilities existent in today’s web applications.

The test-based technique continuously tests for SQL Injection (SQLI) vulnerabilities of SaaS applica-
tions. A test passes if no SQLI vulnerabilities have been found, otherwise it fails. Based on the test
results, metrics are computed which, e.g., indicate the severity of a detected vulnerability as well as
how long a vulnerability persisted.

5.5 Code Quality Gate Satisfaction

In this scenario, the Clouditor continuously validates whether one or multiple software projects
meet defined code quality requirements. This can support validation of requirements derived from,
e.g.,

• The chapter Security Testing of the Software Assurance Maturity Model (openSAMM) [3],
requiring to establish quality gates which have to be passed for an application to be released,
or

• Best Practice SDL Practice #3: Create Quality Gates/Bug Bars of Microsoft’s SDL [8] requiring
to define thresholds – so-called bug bars – which are not to be exceeded for the application
to be released.

A necessary pre-requisite is the existence of a suitable code quality tool, such as SonarQube1 and
its integration within the build process. The Clouditor is then able to extract code quality informa-
tion, i.e. the passing and failing of a quality gate, through defined REST APIs. While the current
prototype implementation only supports the retrieval of such information from the aforementioned
SonarQube tool, its metrics are agnostic to the actual deployed tool.

1https://sonarqube.com
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Fraunhofer AISEC

The Fraunhofer Institute for Applied and Integrated Security AISEC under the responsibility of Prof.
Dr. Claudia Eckert is one of the leading research institutions in Europe. Fraunhofer AISEC is focused
on development of application-oriented security solutions and their precise and tailored integra-
tion into existing systems. Core competences of over 90 scientific and technical members of staff
lie in the areas of hardware security and the security of embedded systems, product and intellec-
tual property protection, network security, and security in cloud- and service-oriented computing.
Fraunhofer AISEC’s clients operate in a variety of industrial sectors, such as the chip card industry,
telecommunications, the automotive industry, and mechanical engineering, as well as the software
and healthcare industries. The main goal is to support and improve the competitiveness of our
clients and partners in the manufacturing and service sectors as well as those in the public sector.

How to collaborate with us

Methodology and tooling of the Clouditor is currently developed and deployed in the cloud lab
environment located at Fraunhofer AISEC. As part of comprehensive research experiments, we have
already implemented and deployed various test-based techniques, some of which are described as
part of this document.

We are looking for:

• Providers and customers of cloud services with whom we evaluate the Clouditor toolbox in a
real world setting,

• industry partners which seek to continuously validate compliance of cloud resources and
cloud-based applications, and

• cloud auditors to further discover requirements suited for continuous assurance.

We are offering:

• Planning and deployment of continuous assurance techniques to check compliance of cloud-
based applications,

• research-backed insights into continuous cloud assurance,

• deep knowledge about functional and non-functional test design and deployment, especially
security testing, as well as

• analysis and design of security architectures of cloud-based applications.
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