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Executive Summary

Network function virtualization (NFV) strives to transition hardware-based network equipment into
virtualized environments. It promises to increase efficiency of current networks, reduce cost for
network operators and foster innovative business models. The main component of NFV are vir-
tualized network functions (VNFs). These components realize functionality previously bound to
hardware-based network equipment in software. To maximize efficiency and utilization, VNFs re-
quire a flexible, scalable and fault-tolerant deployment and infrastructure layer.

Recently, container-based virtualization is maturing into production-grade platforms and becomes
a new option that promises to fulfill the demands set forth by an NFV architecture. The concepts of
loosely coupled software components and microservices matches the requirements of VNFs. How-
ever, containers pose new security challenges. The use of containers for the deployment of VNFs
requires a domain-specific threat analysis.

In this report, we describe a Container-as-a-Service platform, analyze security threats and detail
possible mitigations. Our analysis will show that there are a number of threats. Among them,
the escape from containers is the most devastating. However, many threats can be mitigated by
applying security best practices and guidelines. Moreover, the surrounding ecosystem for container
virtualization provides new tools that assist in securing deployments. For example, secrets and
configuration management make it feasible to distribute credentials and apply configurations effi-
ciently and securely. At the same time, container-based virtualization provide benefits to VNFs for
example by leveraging their fault-tolerance and scalability.

In conclusion, we believe that container-based virtualization can offer a suitable infrastructure for
VNF deployment. As long as providers and tenants account for threats and adopt appropriate
mitigations, risks can be managed. The final judgment depends on the specific use case and its
security requirements.
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1 Introduction

Network function virtualization (NFV) is a new paradigm to design and operate telecommunica-
tion networks [1]. Traditionally, these networks rely on dedicated hardware-based network equip-
ment and their functions to provide communication services. However, this reliance is becoming
increasingly inflexible and inefficient, especially in dealing with traffic bursts for example during
large crowd events [2]. NFV strives to overcome current limitations by (1) implementing network
functions in software and (2) deploying them in a virtualized environment [3]. The resulting virtu-
alized network functions (VNFs) require a virtual infrastructure that is flexible, scalable and fault-
tolerant.

The growing maturity of container-based virtualization and the introduction of production-grade
container platforms promotes containers as a candidate for the implementation of NFV infrastruc-
ture (NFVI) [4]. Containers offer a simplified method of packaging and deploying applications and
services. In addition, they facilitate continuous product iterations by bringing development and
operations closer together. Embracing container-based virtualization and its associated paradigms,
such as micro-services, creates lightweight and reusable software components. These components
are becoming the new building blocks for highly scalable distributed systems.

In the wake of container-based virtualization, a large software ecosystem has developed covering as-
pects of provisioning, networking, orchestration, service discovery, monitoring and automation. In
particular, new orchestration and management software such as Kubernetes1, Apache Mesos2 and
Docker Engine’s swarm mode3 provide an interface to descriptively compose distributed systems.
They automate the scheduling, configuring, scaling, synchronizing and repairing of distributed sys-
tems, resulting in Container-as-a-Service (CaaS). The benefits of container technologies and their
ecosystem correspond well to the requirements of NFVI as well as NFV management and orchestra-
tion (NFV-MANO), in which ETSI explicitly states that virtualization can be based on hypervisors or
containers [4]. Thus, data center providers or network operators could offer container-based NFVI
platforms where tenants can deploy, manage and orchestrate containers hosting their VNFs in a
NFVI-as-a-Service (NFVIaaS) business model.

However, the adoption of container-based virtualization for NFVI also creates new challenges. First,
it is currently unclear how a suitable architecture of a container-based NFVI platform would look
like. Integrated container solutions, such as Kubernetes, often promote deployments of container
engines in a virtual infrastructure rather than on bare-metal systems. The combination of VMs and
containers may introduce additional challenges while providing greater flexibility.

Second, new paradigms like micro-services demand the adoption of new development and ar-
chitecture approaches. This may be more suitable for newly developed VNFs, than for existing

1https://kubernetes.io/
2https://mesos.apache.org/
3https://docs.docker.com/engine/swarm/
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monolithic network services, where a re-design may take a considerable amount of time. Moreover,
the micro-service paradigm with its decomposition of software into loosely coupled components
creates highly dynamic distributed systems. This represents a challenge for deployment, orches-
tration, management and monitoring. Fortunately, the software ecosystem around containers has
developed tools and products that provide a high degree of automation. However, operators and
tenants must still be able to comprehend the deployed system, identify unexpected behavior, and
resolve problems.

Finally, the overarching challenge of container-based NFVI platforms is the evaluation of security. A
thorough understanding of the threats associated with such a platform and its ecosystem is essential
for its adoption. To this end, it is important to illustrate and discuss threats against containers, the
architecture of a container-based NFVI platform and the required management interfaces. From
such a discussion, possible mitigation strategies can be developed.

In this paper, we therefore focus on the security implications of virtualizing network functions using
containers. In Chapter 2 we give a detailed description of container-based virtualization with its
inherent strength and weaknesses. Based on this overview, we conduct a threat analysis of a
CaaS platform by establishing a threat model and possible attack vectors in Chapter 3 and present
possible mitigation strategies in Chapter 4. Finally, we conclude the deliverable in Chapter 5.
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2 Container-based Virtualization

Container-based virtualization is a relatively new form of virtualization that quickly gains industry
adoption. A container provides a self-contained execution environment for an application that runs
isolated from other applications. This environment usually consists of the application itself and its
system library dependencies. The resource isolation and separation between application processes
is achieved by leveraging the capabilities of the underlying OS kernel. In essence, containers are a
logical bundle of an application and all its necessary dependencies.

The distinctive property of containers is that they do not host their own OS kernel. Instead, the
kernel is shared among all containers on a system. This shared kernel manages devices, provides an
interface to kernel subsystems and enforces resource isolation. As a result, containers operate solely
in user space. This is in contrast to VM-based virtualization, where a VM is a virtual representation
of a physical machine. It is provided with virtualized hardware and must bootstrap a complete
operating system. Thus, a VM must host an OS kernel.

This seemingly small difference provides containers with a number of advantages over VMs. First,
containers can be smaller because they do not need to include a OS kernel. Second, container have
a smaller resource footprint during execution because they do not have to execute kernel functions.
Finally, containers are faster to spawn and terminate because they are system process and do not
need to bootstrap a virtual system. However, there is a major drawback in that containers are
not portable across different operating system. They are bound to the architecture and execution
environment of the operating system they were developed for.

While many of the aforementioned concepts are available on several major operating systems, such
as Windows, Unix and Linux, the following sections focus on Linux as the target and basis of
container virtualization.

2.1 Linux Namespaces and Control Groups

The Linux kernel has been an important catalyst for the development and mainstream adoption
of container-based virtualization. It implements the technical foundation that facilitates container
execution using namespaces and control groups (cgroups).

Since their introduction into the Linux kernel, they have become synonymous for container-based
virtualization on Linux. Nowadays, almost every container execution engine relies on the namespace
and cgroup features to execute containers.

A namespace is an abstraction that allows the definition of a logical view on a global system re-
source, in which the instance of a namespace is an identifier for such a logical view. Each process
references a particular namespace and can only access system resources associated with this ref-
erenced namespace instance. Two process must share the same namespace instance for them to
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2.2 Container Runtime and Images

have the same visibility of system resources. On the other hand, if two processes have distinct
namespaces their access appears as though they are the sole user of that system resource. This
later property also permits two process to request the same resource virtually using two distinct
namespace instances. The Linux kernel will remap theses virtualized process resources to the global
system resources.

Currently, the Linux kernel implements seven distinct namespaces. These namespaces are mount,
PID, network, user, UTS, IPC and cgroup. For example, the mount namespace provides a unique
view on mount points to a process. Thus, each mount namespace instance can reference a distinct
mount hierarchy preventing any access from other processes in a different namespace instance.
Similarly, the PID namespace provides separate process ID hierarchies. This allows two processes
with different PID namespace instances to have overlapping PIDs. The user namespace creates new
user and group IDs. Thus, a process can run as virtual root within its namespace but only have
normal user privileges over global resources. The network namespace initiates unique networking
buffers, routing and firewall tables. From the perspective of a process, it would have its own
unshared network stack. Finally, the UTS namespace provides distinct host names, IPC separated
inter process communication endpoints and queues, and cgroup isolates cgroup associations. The
details of the latter are explained shortly.

While Linux namespaces separate resources seen by each process, they do not protect against
excessive resource usage. To this end, Linux implements twelve different control groups. A control
group (cgroup) is associated with a particular type of resource and controls how much of this
resource can be used by a specific process. For instance, one can limit how much main memory
a process is allowed to allocate. Once more is requested, the process is either killed or heavily
penalized until sufficient memory can be made available.

The behavior of the individual control groups are very different, ranging from restrictions of resource
usage to aspects of quality-of-service for network traffic. For example, while the devices cgroup
restricts access to specific device nodes, the cpu cgroup ensures that a process gets its share of the
CPU cycles when the system is under heavy load.

The feature of namespaces and control groups allows the kernel to separate the resources seen
by individual processes. Thus, an application can run independent of other applications on the
same host. If the application is also bundled with all dependencies such as libraries, a software or
application container is formed. This is one of the reasons why OS-level virtualization is synonymous
with containers. Another benefit of a software container is that they resolve dependency issues
between applications. If two applications require the same library in different non-compatible
versions, they can run side by side because they would only see their respective library.

2.2 Container Runtime and Images

The Linux kernel implementation of namespaces and cgroups provides the execution environment
for containers. Container runtimes such as Docker, CoreOS rkt and LXC/LXD provide user space
tools that allow to configure namespaces and cgroups in order to form a container.

While these tools bootstrap the execution environment for containers, containers themselves are
bundled applications with their dependencies. These redistributable application packages consist
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2 Container-based Virtualization

of the standard Linux libraries at the basis. On top of them, developers can deploy and implement
their applications. In its most basic form a container is a directory, which contains the Linux file
system hierarchy used by the containerized application.

However, this approach of using directories is cumbersome. Instead, container images have been
devised. A container image is nothing else than an archived directory with important technical
additions. First, container images are usually arranged in layers. Instead of having one big archive,
different aspects are separated into individual images. A full container can be initialized by stacking
multiple layers, allowing them to be reused for multiple containers.

Depending on the platform used, these files can be bundled into redistributable archives. For
example, Docker uses a format that creates reusable layers. Each layer contains a fixed set of
libraries or packages such as the standard C library. In addition, layers are independent. Thus, once
a layer has been created it can be reused for other applications. Docker will collect all layers and
combine them into the final container image. This permits greater reuse of existing resources and
makes each component of a software stack more independent. A developer could update any layer
given compatibility is assured and create a new updated version of an application.

Another important factor in the adoption of redistributable containers is the development of a
common container image format. Therefore, Docker and other industry partners founded the
Open Container Initiative (OCI)1 in 2015. Participating organizations thrive to create a common
and interoperable specification of a container runtime (runtime-spec2) as well as an image format
(image-spec3). The image-spec defines the format and the associated meta-data of a container. All
OCI compliant container engines support containers provided in this format. Thus, OCI containers
such as those created by Docker are can be deployed and executed on most container platforms.

Container-based virtualization virtualization leverages the kernel of the host operating system.
Therefore, any application running as a container has to rely on the same kernel. Thus, containers
on Linux must run binaries compiled for it. This limits the universality of container images because
they have been created for a specific underlying OS.

1https://www.opencontainers.org
2https://github.com/opencontainers/runtime-spec
3https://github.com/opencontainers/image-spec
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3 Threats Analysis and Attack Vectors

NFV combines various technologies and paradigms such as networking, cloud computing and the
use of software to realize network functions. As a result, threats originate from each of these parts
and from their combinations.

For example, the chaining of VNFs to realize a network service means that each component in the
chain has to work as intended. Any fault or threat to any one component can compromise the
whole service. This is in contrast to monolithic implementations of traditional network services,
where risk is only regarded for the whole service. The NFV approach implicates additional and more
subtle threats due to its use of distributed functionality but also gains certain security advantages.
It has increased flexibility and is ability to response faster to security incidents, i.e. if only one
component in the chain is affected, only this component needs to be updated.

To gather a comprehensive overview of threats, we present a generic architecture of a Container-as-
a-Service platform for NFVI. Based on this architecture, we continue to describe the assumed threat
model. We conclude this chapter with a discussion of attack vectors considering our architecture
and threat model.
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Figure 3.1: Generic CaaS platform for NFVI

3.1 Container-as-a-Service Architecture for NFVI

To provide a common basis for our evaluation, we assume the following infrastructure in a
Container-as-a-Service (CaaS) scenario (see Figure 3.1). This generic infrastructure is based on talks
and workshops with different experts from network vendors, operators and cloud providers. It has

Fraunhofer AISEC
Threat Analysis of Container-as-a-Service for Network Function

Virtualization

9



3 Threats Analysis and Attack Vectors

to be noted, that while we assume that the provider and tenant in our scenario are organizationally
separated, these roles can be fulfilled within the same company, i.e. by different teams.

The provider is using a virtualized environment to create a multitude of VMs, each running a Con-
tainer Layer, such as Docker or rkt. The provider is internally using a VM Management system,
such as OpenStack1, but this is not accessible by the tenant. To provide the container service to
the tenant, he manages a Container Management platform, such as Kubernetes2, OpenShift3 or
Docker Datacenter4. The tenant can use this platform to launch, destroy, orchestrate and monitor
its own containers. The Container Management platform can also be seen as a connection point
to a Virtualized Infrastructure Manager (VIM) component according to the ETSI NFV definition. The
VIM could use the API offered by, e.g. Kubernetes to automatically launch and destroy VNFs, as
instructed by the NFV Orchestrator or VNF Manager. Alternatively, the Container Management
platform could also implemented the necessary VIM interfaces.

3.2 Threat Model

The methodology for establishing the presented threat model is loosely based on the Application
Threat Modeling approach established by OWASP5. The definition of our threat model relies on
four main components:

• Actors describe entities playing a role in our modeled infrastructure, either as a consumer or
as a provider.

• Assets are components or information worth protecting, usually denoted by maintaining a
certain protection goal, such as confidentiality, integrity or availability.

• External Dependencies describe factors that are external to the model but that have certain
influence on the model itself, i.e. assumptions made or external regulations.

• Entry Points are the origin of an attack vector, i.e. attack surfaces.

3.2.1 Actors

In our threat analysis, we primarily focus on the benefits and challenges of using containers as
a basis for NFVI. Therefore, we restrict our attention to platform providers and tenants as the
actors in our threat model. From the perspective of providers, the main concern is how strict isola-
tion between tenants can be enforced with containers and how providers can protect themselves
against threats originating from rogue tenants. Tenants, on the other hand, demand assurance
that providers are able to guarantee isolation of tenants, and need to know how they can take
advantage of containers to improve the security of their services.

1https://www.openstack.org
2https://kubernetes.io
3https://www.openshift.com/
4https://www.docker.com/enterprise-edition
5https://www.owasp.org/index.php/Application_Threat_Modeling
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3.2 Threat Model

We further assume that providers adhere to common cloud security guidelines. They behave hon-
estly and apply state of the art security mechanisms to manage their infrastructure and virtualized
environment based on VMs. However, we assume that providers are not fully familiar with the
threats associated with deploying a container layer on top of VMs. They may also be unfamiliar
with the specific security requirements of a container specific management interface available to
tenants.

For the tenants, we assume that that perceived security benefits are overestimated and risks of
containers are underestimated. Moreover, tenants may be unfamiliar how containers are effectively
applied to deploy VNFs and what security practices are left as their responsibility. However, we
assume that tenants adhere to general best practices with respect to software development and
take sufficient precautions in securing their access credentials to the container management inter-
face. In our analysis, we merely recognize the fact that skilled adversaries may still circumvent these
precautions.

3.2.2 Assets

The assets in our threat model evolve around different types of data (stored or in transit) as well as
the ability to control and use certain components of the overall service.

The first group of assets includes various types of credentials such as user names, passwords, private
keys or session tokens. Especially because of their automated and distributed nature, network
functions may often contain certain types of ephemeral credentials to access other parts of the
system. The main protection goal relevant for this group is confidentiality, because an attacker
could leverage this data to get unprivileged access to other parts of the system.

Another type of data encompass all business data and network data. This is any data pertaining to
clients and business information, either retained in storage accessible by VNFs or ephemeral data
transmitted to and from a network function. Depending on the sensitive nature of this data, either
confidentiality and/or integrity can be seen as the most important protection goal for this kind of
data.

To the management plane, we ascribe the ability to deploy, manage and orchestrate services. Ten-
ants must be able to connect to the container management interface, deploy new VNF containers,
maintain and orchestrate them, as well as be able to monitor and trouble shoot problems. Providers
must retain the ability to identify and fix problems with the underlying virtualization layer. They must
also be able to identify security incidences and take actions accordingly.

3.2.3 External Dependencies

We assume that tenants and providers use base images from trusted sources. For tenants, these
are the base container images, such as images from an official Docker repository6, which they
implement their VNFs. Providers need to use trusted base images for their VMs, i.e. supplied by
Linux distribution vendors. Moreover, providers could actually provide base images to tenants that
are optimized for the underlying architecture.

6https://hub.docker.com/explore/
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3 Threats Analysis and Attack Vectors

Another external dependency for providers is that we assume that they are providing a hardened
infrastructure in accordance and compliance with security best practices or standards, such as ISO
27001. This point may extend to tenants, in case tenants process certain information within their
VNFs, such as credit card information or financial data. In these cases, tenants must be compliant
to the respective standards.

Lastly, certain VNFs may require direct access to the (virtualized) hardware, such as network cards
or GPU. In this case, we assume, that the provider has taken appropriate measures to isolate such
specialized offerings from the rest of the CaaS cluster.

3.2.4 Entry Points

As defined in our architecture, the VM management and virtualization layer are internal to the
provider and not directly accessible by tenants. Therefore, entry points are limited to interfaces
provided to tenants, services implemented in the VNFs and the containers themselves. Adversaries
can exploit possible vulnerabilities in the VNFs or gain access to containers in case they expose
accessible interfaces. In addition, adversaries can gain access through the container management
interface. Finally, adversaries could establish a foot hold by impersonating a valid tenant. This
would co-host a container of their choosing onto the CaaS platform creating a vantage point to
investigate vulnerabilities of the internals of the CaaS platform.

3.3 Attack Vectors

Based on the established threat model, we now further explore possible attack vectors to compro-
mise the security of the defined CaaS architecture. We have divided the attack vectors into four
main categories roughly representing possible attack stages.

• First, adversaries can attack and exploit the VNFs or other software running in containers by
mounting attacks over the network. Possible goals would be to hijack containers or cause
denial-of-services.

• Second, adversaries can attack the container management by finding vulnerabilities in the
user authentication and remote API. The intended goals would be to hijack accounts tenant
accounts in the container management and perform denial-of-service again.

• Third, adversaries can use hijacked accounts on the container management to perform ad-
ditional attacks. They can ex-filtrate valuable information, inject malicious container images
and abuse resources for nefarious purposes.

• Finally, adversaries can use a hijacked or rented container on the CaaS platform to perform
covert attacks against co-hosted containers. They can eavesdrop and spoof network traffic
or try to escape container confinement and take over the underlying host.

Table 3.1 provides an overview of threats and attacks that we have considered in each category.
Many of the discussed threats and attacks are common to cloud computing and have been subject
in previous publications (e.g. [5, 6, 7, 8, 9]). Therefore, we are focusing our discussion on attacks
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3.3 Attack Vectors

and threats that are challenges on a CaaS platform or where a CaaS platform can provide benefits.
In the remaining section, we will describe the threats and attacks.

Threat Description

Attacks against VNFs and Network Services in Containers

T1.1 Exploit software vulnerabilities and misconfiguration

T1.2 Compromise auxiliary network services

T1.3 Perform denial-of-services

Attacks against Container Management

T2.1 Compromise credentials

T2.2 Bypass authentication and authorization

T2.3 Denial-of-service against container management

Exploiting Access to the Container Management

T3.1 Ex-filtrate and manipulate data and sensitive information

T3.2 Manipulate configurations

T3.3 Abuse of tenant resources

T3.4 Inject malicious container images

Exploiting Access to Containers

T4.1 Ex-filtrate sensitive information through side-channel attacks

T4.2 Escape container confinement

T4.3 Spoofing and eavesdropping on network traffic

T4.4 Attack internal network services

Table 3.1: Overview of threats and attacks considered in our analysis

3.3.1 Attacks against VNFs and Network Services in Containers

For attackers, VNFs and network services running on containers of tenants are prominent targets.
First, they expose possible entry points on the local network and the Internet. This makes it easy
to discover them during reconnaissance. For example, port scans are a prevalent technique to find
possible entry points [10]. They have become so ubiquitous that nowadays they are routinely used
to scan the entire Internet and probe for vulnerable services at a large scale [11], even listing them
in special search engines for devices such as Shodan7. Thus, attackers can identify potential targets
quickly.

Second, attackers have a greater chance of finding and exploiting vulnerable systems among the
ones hosted in containers by tenants. For tenants, the primary focus is on the business value derived
from developing and operating their VNFs. If security is not within this business focus, it inevitably

7https://www.shodan.io
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3 Threats Analysis and Attack Vectors

becomes secondary. Moreover, tenants may simply lack the necessary resources to realize security
measures properly and defend against targeted attacks effectively, especially if they are a small or
medium enterprise (SME) [12]. This creates opportunities for attackers to compromise vulnerable
systems successfully.

Finally, VNFs and their data are valuable targets. Attackers gain access to sensitive business data
and can disguise malicious activities in the future. In the following, we enumerate the main cate-
gories of attack vectors that we believe attackers will be exploiting. These attacks are focused on
compromising VNFs and containers or disrupting their services.

T1.1 Exploit software vulnerabilities and misconfiguration Software vulnerabilities and mis-
configuration are one of the main security weaknesses that attackers will exploit to compromise
systems. They are the underlying cause for many of the common security threats [13, 6]. This is
unsurprising because secure software development and proper implementation of security mech-
anisms is very difficult. Thus, VNFs are subject to the same risks. Vulnerabilities can potentially
exist in any component of the VNF’s software stack, including third-party dependencies. They could
potentially even exist in a container base image, if it stems from an untrusted or unmaintained
source.

If attackers can find exploitable software, they can disrupt the offered network service and poten-
tially take over the whole container. The actual consequences may vary. For example, an attacker
may gain the ability to alter data transmitted to and from the service, redirect traffic, extract busi-
ness information or subvert the intended service function. This could be particularly damaging for
a security focused NFV service such as a VPN gateway or intrusion prevention system. In addition,
an attacker taking over the underlying container obtains the ability to perform additional attacks.
Especially in a highly distributed scenario, such as multiple VNFs chained together, attacking the
“weakest” link may prove to be very effective.

This threat can be mitigated by: M1.1, M1.2, M1.3, M1.4, M1.6.

T1.2 Compromise auxiliary network services of VNFs and containers In addition to the
main functionality of the VNF itself, tenants may deploy additional network services with their
containers. These services can be built into the VNF itself for example to allow monitoring or
remote configuration. Moreover, tenants may unnecessarily install remote access services such
as SSH into their containers to administer them remotely. If these network services are directly
accessible over the Internet (or from another tenant of the CaaS), they provide an additional entry
point for adversaries. For example, attackers can try to guess access credentials or exploit known
vulnerabilities in the network services. Once an attacker gained access to the container through
these service, additional attacks become possible, similar to T1.1.

This threat can be mitigated by: M1.1, M1.2, M1.3, M1.4.

T1.3 Denial-of-Service against VNFs and containers Rather than trying to get unprivileged
access to the container hosting the VNF, an attacker could launch a denial-of-service (DoS) against
it. With it, an attacker can degrade service quality or disrupt services completely. While DoS attacks
are not specific to container environments, two important properties can amplify DoS attacks.
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First, containers running on a host share the underlying system resources. Thereby, containers
facilitate greater density because they have a smaller resource footprint. However, greater density
also increases the chance of resource contention and starvation. A well-executed DoS attack can
cause a ripple effect that negatively affect all co-hosted containers and VNFs. For example, a
malicious container can deplete the entropy pool for the pseudo-random number generator [14].

Secondly, container-based virtualization on Linux uses control groups to arbitrate resource usage
between containers by enforcing limits. However, the initial implementation of cgrous (i.e. cgroups
v1) had a number of shortcomings that negatively affected the enforceability of resource limits (e.g.
[15, 16, 17, 18]). Moreover, strict resource limits combined with improper estimation of resource
usage can lead to exploitable weaknesses. For example, the memory cgroup utilizes an out-of-
memory killer to terminate processes that demand more memory than their conceded maximum.
In particular, software such as web servers [17], that generate dynamic responses and thereby have
a hard to predict resource usage, can be susceptible. An attacker could misuse the out-of-memory
process termination by causing short-term request peaks that trigger the out-of-memory killer. This
inadvertently facilitates denial-of-services rather than prevent them.

This threat can be mitigated by: M1.4, M1.6.

3.3.2 Attacks against the Container Management

A CaaS platform requires a container management interface for tenants to deploy, manage, orches-
trate and monitor their containers. This interface is essential for the provider and the tenant. If
the provider implements an interface that is vulnerable to attacks, attackers can gain access to the
CaaS platform. In addition, any vulnerability would strain the trust relationship between provider
and tenants. For the tenant, this interface is possibly the only connection to their deployment. Thus,
losing it would mean loss of control over their deployments. As a result, protecting the container
management interface is an important task for the provider.

T2.1 Compromise credentials The container management interface encompasses a great deal
of privileges because anyone gaining sufficient access is able to deploy new instances and disrupt
existing NFV services. It may also be possible for an adversary to submit compromised container
images that unsuspecting tenants then use to initiate NFV services. Moreover, adversaries can use
the same access to extract business data. For example, they may be able to create backups of
container instances or they can export container images. The impact of compromised credentials
is exacerbated by the fact that weak and insufficient safe guarding of credentials is recognized as
one of the top threats in cloud computing [6].

This threat can be mitigated by: M2.1, M2.2.

T2.2 Bypass authentication and authorization Usually the container management is exposed
to the tenant in a web front-end or REST API. In case these interfaces contain software vulnerabilities
or implement authentication and authorization insufficiently, an attacker would be able to gain
access to the container management and pose as a tenant. It is also possible that an attacker gains
the ability to submit requests without prior authentication and authorization. The Cloud Security
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Alliance (CSA) has named this one of the top threats in cloud computing in 2016 and it extends
from the cloud to the container world [6].

This threat can be mitigated by: M2.1, M2.3.

T2.3 Denial-of-service against container management A denial-of-service attack against the
container management can interfere with the ability of tenants to control and maintain their de-
ployments. This can lead to the inability to react to changing resource requirements. In addition,
the container management is the external API to interact with the CaaS platform. Thus, other
services may become inaccessible as well. For example, tenants may be unable to retrieve logs. An
attacker could use this opportunity to hide additional attacks on container instances.

This threat can be mitigated by: M2.4.

3.3.3 Exploiting Access to the Container Management

Once an attacker has gained access to the container management, i.e. by utilizing T2.1 or T2.2,
additional attacks become feasible. Due to the central role of this interface, these attacks can cause
a lot of damage for either tenant or provider. This problem is exacerbated if tenants and providers
consider the container management interface as the only security boundary. In that case, internal
access to data and services may be less guarded. This would simplify the work of adversaries, as
they do not have to overcome additional security measures once they gained access.

T3.1 Ex-filtrate and manipulate data and sensitive information With access to the container
management, an adversary gains access to all resources a tenant uses or has used on the CaaS plat-
form, unless additional safe-guards, such as access control, i.e. using different users and roles, are
in place. First, there could be logs, snapshots and persistent data volumes. An attacker can ex-
port this data from the platform and extract usable information. This type of data may proof very
valuable because data may be historical and not within the immediate attention of tenants. Thus,
attackers may find data from older or no longer existing deployments. Persisted data could also
potentially include configuration data and possibly credentials. These would provide an attacker
with details on additional targets and possible attack vectors. Ex-filtrated credentials would gain an
attacker direct access to sessions, VNFs and containers. An attacker could also download container
images used by the tenant. These images contain the code of VNFs and usually represent confiden-
tial business data for the tenant. Finally, an attacker could simply delete all data to disrupt services
and cause business loss as tenants would for example lose important customer data.

This threat can be mitigated by: M1.2, M1.5.

T3.2 Manipulate configurations An adversary can also manipulate configurations through the
container management. This could be used to implement back doors and other vulnerabilities
that the adversary can use to maintain long-term access. For example, an adversary could open
additional ports on a container that could then be exploited.

This threat can be mitigated by: M1.5.
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T3.3 Abuse of tenant resources The container management is also the interaction interface
between tenants and the CaaS platform. Common operations are the creation and configuration
of compute, network and storage resources. An attacker can use the same operations to create
and abuse resources from the CaaS platform. For example, an attacker could instantiate a container
on behalf of the compromised tenant and use it for other nefarious purposes [6].

In addition, the container management may have an interface to connect to containers remotely.
Thus, an attacker can connect to containers to install back doors that are more persistent or extract
data from a running container instance. The latter could bypass security mechanisms that would
normally protect data at rest.

This threat can be mitigated by: M1.4.

T3.4 Inject malicious container images As part of the CaaS platform, a container image repos-
itory must be maintained because it may not be efficient to always retrieve container images from
remote locations. Access to the repository would usually also be controlled by the container man-
agement. An attacker can then use the unprivileged access to inject malicious container images.
If an attacker can convince tenants that his image is an official release, he can obtain a persistent
presence in all container instances that use the malicious image.

This threat can be mitigated by: M1.2.

3.3.4 Exploiting Access to Containers

Once an adversary has possession of a container on the CaaS platform, additional attacks become
possible that could compromise the overall security of the CaaS platform. Thereby, an adversary
does not have to exploit a vulnerability in a VNF, container or the container management. Instead,
adversaries can pretend to be legitimate tenants and rent resources. This would provide them with
access to the system without arousing suspicions. In combination with covert side-channel attacks,
simply renting resources would represent an attack vector that is very difficult to detect and defend
against.

In addition, adversaries can exploit weaknesses and vulnerabilities to compromise container iso-
lation and to break out of container confinement. For example, attacker can use Linux kernel
vulnerabilities to easily breach isolation and confinement because all containers on a host share
a kernel [14]. Moreover, container runtimes can introduce vulnerabilities through implementation
flaws (e.g. CVE-2015-36298 or CVE-2015-36309). Finally, insufficient restrictions on capabilities
and permissions can provide sufficient leverage to break out of containers [19, 14].

With access to a container on the CaaS platform, attackers also gain access to its network resources
and services. Thus, malicious users can mount network attacks such as spoofing, eavesdropping,
man-in-the-middle, and denial-of-services. As these attacks originate from within the CaaS plat-
form, they can catch tenants off guard who neglect to secure their platform internal network
traffic and services.

8https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3629
9https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3630
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The following sections will provide additional details on a number of threats that attackers can
exploit once they have access to a container.

T4.1 Disclose sensitive information through co-residence One inherent weakness of a CaaS
platform and other cloud computing services is that multiple tenants share the underlying system
resources. This introduces the problem of co-residence [20]. Adversary can use side effects re-
sulting from a shared resource usage to deduce information from co-hosted containers. Security
researchers have shown that it is possible to leak sensitive information (e.g. [20]), extract secret
keys (e.g. [21, 22, 23]) and even manipulate memory (e.g. [24]) from co-hosted instances. In
addition, residual data from previous users, for instance left on insufficiently wiped volumes, can
be reconstructed [5].

Because these attacks use normal system operations like reading from disk and memory, they are
difficult or impossible to detect. This allows adversaries to extract sensitive information and data
covertly. As a result, tenants may remain unaware of a data breach until that data has been
leaked.

This threat can be mitigated by: M1.3.

T4.2 Escape container confinement The greatest threat against the integrity of a CaaS platform
is the escape from container confinement. A successful escape from container confinement makes
it very likely that an attacker gains full control over the underlying host. In the case of containers,
this would automatically comprise all co-hosted containers. In addition, adversaries would gain the
ability to mount attacks against the core infrastructure of the CaaS platform.

There are multiple ways for attackers to escape container isolation and table 3.2 exemplifies a num-
ber of known CVEs from the past years. One way to escape containers is to exploit vulnerabilities
in the Linux kernel. The Linux kernel enforces container isolation by employing namespaces and
cgroups. However, if attackers gain kernel-level privileges through privilege escalation, they can
circumvent isolation (e.g. CVE-2014-4699 and CVE-2016-3134). What is even more dangerous
about Linux kernel exploits is the fact that all co-hosted containers share the same kernel. An
attacker with a working kernel exploit automatically compromises all co-hosted containers of any
tenant. Thus, the security omissions of a single tenant endanger all other tenants residing on the
same host.

Another attack vector can leverage vulnerabilities in container runtimes. They are responsible for
bootstrapping containers and properly configuring namespaces and cgroups. Unfortunately, this
can be prone to mistakes (e.g. CVE-2015-3629, CVE-2015-3630 and CVE-2016-9962). For attack-
ers, however, these become opportunities to escape containers.

As malicious tenants, attackers can also introduce vulnerabilities at will. For example, they can
request resource based on specially crafted images that make use of known vulnerabilities (e.g.
CVE-2015-3627 and CVE-2015-3630). Similarly, they can request a container instance where the
configuration is intentionally less secure and would facilitate attacks to escape containers. There
are a number of Linux kernel resources and capabilities that are known to be exploitable when
a container instance gets unrestricted access to them [14]. Moreover, attackers could request
privileged containers that share their users and groups with the host. Thus, the root user in the
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CVE Description

CVE-2013-1957 Bypass intended read-only property of a filesystem by leveraging a sepa-
rate mount namespace

CVE-2014-4699 Gain privileges, or cause a denial of service through ptrace and fork sys-
tem calls

CVE-2014-5206 Bypass intended read-only restriction and defeat certain sandbox protec-
tion mechanisms through use of a user namespace

CVE-2015-2925 Bypass intended container protection mechanism by renaming a directory

CVE-2015-3627 Gain privileges through a symlink attack in an image

CVE-2015-3629 Escape containerization and modify files on host when respawning a con-
tainer

CVE-2015-3630 Modify host, obtain sensitive information, and perform protocol down-
grade attacks through crafted images

CVE-2016-3134 Gain privileges or cause a denial of service (heap memory corruption)
through setsockopt call in netfilter kernel subsystem

CVE-2016-5195 Gain privileges by leveraging incorrect handling of a copy-on-write fea-
ture to write to a read-only memory mapping

CVE-2016-9962 Escape containerization by using ptrace on processes joining a container

Table 3.2:
Overview of CVEs against container virtualization and container platforms. Descriptions are derived from Mitre’s CVE
(https://cve.mitre.org/) and NIST’s NVD (https://nvd.nist.gov/).

container is also the root user on the host. This obviously plays into the hand of adversaries, as any
container escape will automatically make them root on the host with all its security implications.

The ramifications of a successful container escape are significant. As mentioned before, an attacker
gains full control over the underlying host. This compromises all co-hosted containers and tenants.
In addition, the unrestricted access to the container runtime would allow starting new container
instances that may not be accounted for within the CaaS platform. Thus, attackers could hide ma-
licious containers. Similarly, they can subvert all container-related operations for example through
man-in-the-middle attacks. Moreover, gaining access to the underlying VM provides new opportu-
nities to exploit vulnerabilities in the core infrastructure of the CaaS platform. Successful attacks on
the virtualization layer and core infrastructure can compromise the CaaS platform as a whole.

This threat can be mitigated by: M3.1, M3.2, M3.3, M3.4, M3.6.

T4.3 Spoofing and eavesdropping on network traffic Just like VMs, containers must be con-
nected to the underlying network interface, which in our model is provided by a VM. There a
different methods to connect containers. One way would be to give containers direct access to
the network interface of the VM. However, this opens up many attack vectors. For one, containers
would share the same network stack allowing other containers to intercept and spoof network
traffic destined for co-hosted containers. Secondly, direct access to the underlying network would
allow adversaries to gain valuable information on the internal network traffic. This would permit
attacks against internal provider services.
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Another way to connect containers to the underlying network is to create a virtual switch or a
bridge on in the container runtime. Containers are then connected to this switch or bridge very
similar to how the networking of VMs is connected to virtual switches in the hypervisor. Combined
with network namespaces, this would provide isolation of the network stack between containers.
However, containers now share a common network segment. In particular, bridge devices are
susceptible to spoofing and eavesdropping attacks that exploit the fact that they share a common
network segment.

This threat can be mitigated by: M3.2, M3.5.

T4.4 Attack internal network services In addition to attacking the network between contain-
ers, adversaries can also attack supporting services such as Kubernetes DNS service, which is only
reachable from within the cluster network. The highly distributed nature of containers requires
shared services for example for coordination and service discovery. An attacker can target these
services to degrade services. For example, a denial-of-service against the service discovery infras-
tructure could prevent NFV services to react to changing resource requirements properly. Thus, the
NFV service may no longer be able to scale appropriately to sudden demand spikes.

This threat can be mitigated by: M3.2, M3.3, M3.5.
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Based on the description of possible threats and attacks against the CaaS platform, it becomes
possible to devise strategies that can mitigate risks. In this chapter, we discuss these mitigation
strategies. Thereby, we focus on providing a broad overview of useful directions with some promi-
nent examples. We explicitly abstain from giving detailed instructions to realize the presented
strategies because specific instructions may change over time and are not applicable to all use
cases. Instead, we hope that our discussion will engage the reader’s interest to further investigate
presented strategies and adopt those that fit their specific requirements.

In addition to our discussion, a large number of useful guidelines and best practices exist that are
relevant for container-based virtualization and cloud computing in general. Therefore, we provide
them here collectively and highly recommend that readers consult them for additional references.
First, the Cloud Security Alliance1 publishes a wide range of reports and papers concerning all as-
pects of security in cloud computing e.g. [7]. Second, national and supranational security agency
such as NIST2 (e.g. [8, 9, 25]), BSI3 (e.g. [26, 27, 28]) and ENISA4 (e.g. [12, 29]) provide technical re-
ports and guidelines in accordance with national cybersecurity recommendations and requirements.
The Center for Internet Security5 on the other hand publishes CIS Benchmarks that are a collection
of security-enhancing configuration guidelines with conformity checks for specific software prod-
ucts. Among others, CIS Benchmarks exist for Docker [30], Kubernetes [31], and different Linux
distributions (e.g. [32, 33, 34]). Finally, the NCC Group white paper by Aaron Grattafiori [14] com-
pares the security model of three container engines and discusses how certain configurations can
lead to vulnerabilities.

4.1 Securing VNFs

In the previous chapter, we have outlined possible attacks against VNFs and additional threats once
an attacker gained access to a container. Thus, one important countermeasure is to secure VNFs.
This primarily means to ensure that VNFs and software deployed in containers does not contain
vulnerabilities. Moreover, once new vulnerabilities are discovered, processes should be in place to
quickly update running containers.

Secondly, security measures and best practices to software development and system administration
should be followed. This ensures that containers withstand attacks or at least make them more

1https://cloudsecurityalliance.org/
2https://www.nist.gov/
3https://www.bsi.bund.de/EN/
4https://www.enisa.europa.eu/
5https://www.cisecurity.org/
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difficult. This would provide time and possibilities to identify ongoing attacks and initiate coun-
termeasures. To this end, a monitoring and logging service should be operated and continuously
reviewed. In addition, automatic warning systems can call attention to suspicious behavior.

While tenants must realize most of the following mitigation strategies, providers can positively
reinforce better security practices. From a security perspective, this can become a positive feedback
loop that is beneficial to both of them. Moreover, tenants and providers should cooperate on
certain security practices to take full advantage of them.

M1.1 Employ a secure software development life-cycle Tenants should assume that their
VNF software contains flaws and have appropriate processes in place to mitigate these cases. To
this end, they can adopt a secure software development life-cycle (S-SDLC). A S-SDLC integrates
security considerations into the normal software development life-cycle. This ensures that risks,
threats and security mechanisms are formalized alongside the development of VNFs.

Another important part of S-SDLC is to define and implement good coding practices. This includes
writing documentation, adopting secure programming guidelines, enforcing code quality metrics
and perform software tests. In particular, code quality and adherence to coding standards can
be checked automatically with tools, such as SonarQube6. Most importantly though is that these
policies are mandatory and code that does not meet standards is rejected. With this approach,
tenants reduce the chance of introducing easily exploitable vulnerabilities into their code.

While containers do not help tenants in writing more secure code, they do facilitate a more contin-
uous testing. Modern continuous integration (CI) and continuous delivery (CD) systems can build
new container images from code repositories, such as Git7 automatically. Thus, every commit can be
used to generate a new container image that is immediately deployed for testing in a development
environment. In fact, containers support this streamlined process because they are self-contained
software bundles. Because developers use the same container blueprint for development that are
later used for testing, there are no conflicts in the software dependencies.

In addition, once a new software version passes all tests, it can be deployed automatically to the
CaaS platform. This step should be safeguarded by an internal approval processes. For example,
tenants can configure their CI/CD pipeline to only start deployment in production after quality
assurance, security testing and operations have approved the new version.

The later step can be important to prevent sensitive data to be leaked in container images. During
development, developers may include private keys and configuration files with passwords into their
container images for convenience and testing reasons. However, this information should never be
published in a production container image. Thus, one of important step before actually deploying
any container image to the CaaS platform is to verify that no sensitive information is included. In
case of Docker, recent versions allow to specify these image differences between development and
operations by using multiple FROM commands, i.e., one for development and one production in
the respective Dockerfile.

Containers also support a continuous update of software dependencies. Because everything is
bundled in the container image, there is no conflict between versions available in development

6http://sonarqube.org
7https://git-scm.com
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and in operations. Thus, as long as newer libraries do not generate conflicts, updates can be
applied immediately for testing and quickly rolled out to production. This can reduce the time a
vulnerable container is maintained running. Moreover, orchestrators like Kubernetes and Docker’s
swarm mode support different deployments mode that support a downtime free transition between
outdated and updated software versions.

Another important advantage of the CaaS platform for NFV is that containers promote a micro-
service architecture. In short, software is decomposed into single independent and replaceable
components. A similar decomposition is envisaged for VNFs. The main benefit from a security
standpoint is that these independent components are very loosely coupled and should be replace-
able. Thus, any update in a single component should be deployable without causing conflicts.

This mitigation strategy can help to mitigate: T1.1, T1.2.

M1.2 Maintain a secure container life-cycle Container-based virtualization introduces contain-
ers as an immutable artifact of software development and deployment. The software development
life-cycle generates a new container image for every new version of the software. As a result, ten-
ants have to maintain a secure container life-cycle as well to ensure that new versions of a container
are deployed and old ones are terminated. The software development and container life-cycle man-
agement are overlapping and development decisions influence container decisions and vice versa.
In addition, containers have their own life-cycle once they are deployed.

Containers are built up from base images. These base images are the foundation of VNFs and
tenants must place their trust into the provided libraries. As mentioned before, if an adversary is
able to introduce malicious container base images into the development pipeline all derived images
will be compromised. Therefore, tenants must ensure that the base image they use is from a trusted
source.

To this end, Docker has introduced Notary and Content Trust8. Notary and Content Trust define
mechanisms and processes that ensure that image metadata is signed and verified. Thus, if tenants
download an image from a party they trust, they can verify the signature and the cryptographic
hashes of the image files. Similar security mechanisms are also present in other container runtimes,
such as rkt.

By using signed and verified base images, tenants secure their initial step in the container life-cycle.
However, once a container image is generated and possibly deployed, a continuous verification of
the container content is required. During the use of a container image, contained libraries and
dependencies might prove vulnerable to attacks. In such cases, the vulnerable images must be
replaced with updated once that contain the updated library versions. In order to identify whether
a container image contains vulnerabilities, automated vulnerability scanners can be employed. For
example, Docker Security Scanning9 and CoreOS Quay Security Scanner10 are enterprise-ready vul-
nerability scanners for container images. In addition, CoreOS maintains the open-source project
Clair11 which provides the underlying scanner for their Quay Security Scanner. These regularly scan
images and generate warnings once vulnerable dependencies are detected.

8https://docs.docker.com/engine/security/trust/content_trust/
9https://blog.docker.com/2016/05/docker-security-scanning/

10https://coreos.com/blog/quay-security-scanner-now-powered-clair-10
11https://github.com/coreos/clair

Fraunhofer AISEC
Threat Analysis of Container-as-a-Service for Network Function

Virtualization

23

https://docs.docker.com/engine/security/trust/content_trust/
https://blog.docker.com/2016/05/docker-security-scanning/
https://coreos.com/blog/quay-security-scanner-now-powered-clair-10
https://github.com/coreos/clair


4 Mitigation Strategies

Another security measure is to secure the actual deployment pipeline. So far, tenants ensured that
container images are generated from secure and trusted base images and that their images do
not contain vulnerable software. However, adversaries are still able to inject malicious images into
deployment or force a roll back to a now vulnerable image. To prevent this, tenants can utilize tools
such as Content Trust and Notary themselves. They can sign their own images before hosting them
on the providers CaaS platform. During the deployment process, they can then specify rules to
only allow images signed by themselves to be deployed. In addition, they can fix container image
versions by using their cryptographic hashes. Thus, container images are uniquely identified by their
digest. This is enabled as container registries nowadays use content addressable storage.

Finally, tenants must initiate regular cleanup operations. As container images are constantly gener-
ated, the container registry quickly fills with images. To prevent attackers from running outdated
and vulnerable images, the container registry should be regularly pruned. This ensures that only up-
to-date image versions are present to be executed. However, the cleanup operations also extend
to the container instances. Container instances may have associated files such as temporary files
and logs. These files must also be pruned if container instances are terminated. This prevents that
attackers can extract valuable data from past instances.

This mitigation strategy can help to mitigate: T1.1, T1.2, T3.1, T3.4.

M1.3 Harden containers Ensuring that container images and VNFs are free of known vulnera-
bilities prevents easy exploitation by attackers. However, the risk of unknown or zero-day vulnera-
bilities remains. A mitigation strategy against these is to harden containers. Hardening is a process
that minimizes the attack surface and mitigates common exploit vectors by applying security best
practices and employing software protection mechanisms.

One hardening approach is to use specifically compiled binaries that utilize protection mechanisms
against common exploits such as buffer, heap and stack overflows. The purpose of these mecha-
nisms is not necessarily to prevent exploitation but to make it a deterrent against attackers. There
are security focused GNU/Linux distributions available that distribute protected binaries and system
libraries. For example, Alpine Linux12 is one such distribution and is thus often used as a base im-
age for production-ready containers. In addition, the discovered vulnerabilities due to co-residence
has motivated the development of specifically designed libraries, especially cryptographic ones [22].
These libraries can prevent side-channel attacks between containers.

Additionally, tenants should use minimal systems. These systems only contain the software required
for their function. This is actually encouraged by containers. One of the security best practices for
containers is to run only one service per container. This reduces the attack surface because there are
fewer parts that can be exploited. Moreover, it becomes easier to maintain the container images
because each container image has a well-defined and small set of software packages installed. The
one-service-per-container paradigm also facilitates independence between containers. It becomes
easier to scale individual parts of a system that experience resource shortages.

The adoption of security best practices during hardening also ensures that software is configured
properly. Hardening guidelines for specific software packages always include secure configuration
defaults and highlights possible pitfalls. These guidelines however should always be adapted to

12https://alpinelinux.org
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the specific use case for tenants. It is the responsibility of the tenant to be diligent about applying
security guidelines and best practices.

This mitigation strategy can help to mitigate: T1.1, T1.2, T4.1.

M1.4 Perform logging, monitoring and alerting The continuous security of running VNFs and
containers depends on the ability to identify attacks and reconstruct them. The earlier tenants
identify suspicious behavior and possible attacks, the faster they can initiate countermeasures. In
the best case, they are able to stop attacks severe before harm is done. In the worst case, they at
least are able to reduce the attacks severity and collect important details on the attack itself. This
knowledge is important to find and fix flaws and vulnerabilities to prevent similar attacks in the
future. Therefore, a key activity is to perform logging, monitoring and alerting.

The importance actually increases because of the dynamic container deployment. Containers may
be started when demand arises and then quickly be terminated once they are no longer required.
Furthermore, the focused nature of containers and the application of a microservice architecture
means that there are more systems to monitor. As a result, monitoring and logging must handle
this dynamic landscape and be able to collect data from many systems at once.

It is important however to achieve a balance between minimal container images on the one side
and sufficient monitoring on the other. One option is to use built in monitoring and logging
facilities in container orchestrators. For example, Kubernetes contains a logging collection facility
that automatically collects terminal output from containers. Thus, tenants could simply write system
logs to console and have Kubernetes collect and enrich them with associations to the originating
container and service.

Another option is to use dedicated containers solely for logging and monitoring. Other containers
simply have an agent that emits logging message to this central container or container cluster. This
is in line with the one service paradigm because the logging containers have only the purpose of
logging. Moreover, they can be secured by not exposing them to the outside world and only allow
containers to interact with them on a private network. This can also be extended to create logging
for each service separately preventing information from different systems to be compromised.

In case persistent log files are required, tenants can use persistent volumes. These can be attached
to container instances and logs are then written as files to these volumes. This can be extended to
use encrypted file-systems on the used volumes. This would prevent attackers from reading logs
they may have obtain through other means.

Finally, if tenants require remote access for some reason, there are again built-in mechanisms to
attach to a container. This creates a connection to a shell running in a remote container. In
Kubernetes, this connection is relayed to the user. In case of Docker, tenants would require first
access to the host and would then be able to attach to a container using the interface to the Docker
Engine. If providers do not want to provide this level of access to the container runtime, they can
implement a forwarding mechanism similar to Kubernetes or provide a web based management
console similar to ones available on modern server-class hardware equipment. In short, remote
access should always be realized using the attach mechanisms for containers and then securely
relaying the resulting terminal session.

This mitigation strategy can help to mitigate: T1.1, T1.2, T1.3, T3.3.
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M1.5 Utilize secure configuration and secrets management One of the challenges with con-
tainers is the management of configuration data and secrets, such as passwords or credentials.
Containers are immutable artifacts and in order to create customized instances, configurations
must be injected upon instantiation. In addition, secrets and passwords should never be included
into container images. For one, it creates a vulnerability because adversaries can extract them by
obtaining a copy of the image and they are potentially shared with third parties. It also makes
it more difficult to adjust them and would require multiple copies of the same images with just
different secrets.

The better option is to inject configuration upon instantiation or to request them from a central
management meta-data system during run-time, similar to the cloud-init13 system wildly used in
cloud computing. The idea behind a centralized configuration and secrets management is that
configuration options are decoupled from their values. A container is defined with names for
configuration options and locations of secrets. After the container is started it will request these
informations from a central management service. Examples in the container world include the Con-
figMap14 and Secrets15 concepts of Kubernetes. Thus, tenants can deposit different versions and
map them to specific container instances. In addition, many systems ensure that only authorized
container instances get access to their and only their secrets. Hence, even though secrets reside
centrally this provides security if implemented correctly.

This mitigation strategy can help to mitigate: T3.1, T3.2.

M1.6 Take advantage of microservices and automated container scheduling Taking advan-
tage of container and their benefits means to adopt a system architecture based on microservices.
A microservice is an independent software component that performs a single, focused task. In
addition, microservices have well-defined interfaces. This interface allows to create loosely-coupled
and modular system composed of microservices. Thereby, each mircoservice can be maintained,
scaled and replaced independently of the other microservices. This allows users to scale individual
parts and services. The result is a highly scalable system.

Another benefit of containers is that they are very lightweight. They are processes and only require
the time to prepare their environment, setup namespaces and cgroup, and start a new process.
Thus, it becomes very efficient to start and terminate containers as the need arises. If the current
system load is high, additional containers are spawned within seconds and are as easily terminated,
once the load subsides. The adoption of a microservice architecture supports this rapid scaling,
because components are independent.

Container cluster management systems such as Docker in swarm mode16 and Kubernetes17 lever-
age microservices and the rapid deployment of containers to facilitate an automated service scaling.
They can monitor the system, detect faults and spawn a new container that replaces the faulty
one. They can also detect increased system load and can auto scale the cluster within predefined
limits.

13https://cloud-init.io
14https://kubernetes.io/docs/tasks/configure-pod-container/configmap/
15https://kubernetes.io/docs/concepts/configuration/secret/
16https://docs.docker.com/engine/swarm/
17https://kubernetes.io/docs/tasks/
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4.2 Securing the Container Management

For VNFs, this provides scalability and fault-tolerance. In addition, it can protect against certain
attacks. For example, auto scaling of services can reduce the impact of denial-of-service attacks.
Moreover, tenants can use the same features to safely roll out new software versions. This makes it
possible to react quickly to discovered vulnerabilities and deploy bug fixes to production.

This mitigation strategy can help to mitigate: T1.1, T1.3.

4.2 Securing the Container Management

One of the entry points that enables attackers to gain broad access to the CaaS platform is through
the container management (CM). Once attackers gain access, they can start new containers, ma-
nipulate existing ones, inject malicious code and ex-filtrate data. At the same time, the CM is
an important interface for tenants to manage and orchestrate their NFV deployment. Therefore,
securing the container management interface is paramount.

M2.1 Implement strong identity and access management The CM must support strong user
authentication and authorization. For example, role-based access control can be applied. This
would allow tenants to create roles with restrictive permissions that are tailored towards individual
NFV services. Individual groups can be created that administer parts of a specific NFV service. Thus,
a compromise would restrict the exploitability to one service.

To further secure user authentication and authorization, public key-based authentication and two-
factor authentication should be supported. The former prevents tenants from using simple, easily
guessable passwords – a common vulnerability [6]. Moreover, multi-factor authentication (MFA)
can further secure security critical operations by requiring a user to provide a second authentica-
tion token. This would make it more difficult for attackers, because they would need to acquire
possession of the additional token. Production-grade container management systems such as Ku-
bernetes also support delegating the authentication to already existing systems using technologies
such as OpenID Connect as well as a generic hook system to include further external authentication
frameworks. Using an already in-place system, such as a corporate LDAP or Single-Sign On (SSO)
has many advantages. First, password and credential policies can be managed in one central place.
Second, access rights can be given to already existing users and groups and third, revoking access,
i.e., in case an employee leaves the organization, is enforced immediately.

This mitigation strategy can help to mitigate: T2.1, T2.2.

M2.2 Secure communication with CM Another important mitigation strategy is to provide se-
cure communication channels between tenants and the CM. The first step in providing secure
communication channels starts with selecting state-of-the-art cryptographic algorithms. Newly
discovered weaknesses and increasing compute power make some cryptographic algorithms ob-
solete. Likewise, other algorithms may require larger parameters to maintain the same level of
security. Therefore, it becomes important to consult the recommendation regarding cryptographic
algorithms and their parameter. These are published, for instance, by NIST [35, 36], ENISA [37] and
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BSI [38]. A collected overview of recommendations from many organizations can be found at the
BlueKrypt’s Keylength.com18 project.

Cryptographic algorithms also affect the creation of a digital certificate for the CM. With a trusted
digital certificate, the tenants can validate the authenticity of the CM preventing man-in-the-middle
attacks. Therefore, providers must choose a trustful certificate authority and generate state-of-the-
art certificate. New certificates should no longer use the hash functions MD5 or SHA-1 in their
signatures because they have known weaknesses. In particular, exploits against certificates with
MD5-based signatures are known [39].

Finally, providers must configure the communication channels properly. This often requires disabling
deprecated cryptographic algorithms. For example, communication over HTTP secured by Transport
Layer Security (TLS) becomes vulnerable to a number of attacks if deprecated ciphers are not pro-
hibited and downgrades attacks are possible [40]. For HTTP and TLS, SSL Labs19 by Qualys provides
the ability to test and grade ones certificate and server configuration.

This mitigation strategy can help to mitigate: T2.1.

M2.3 Employ secure life-cycle management for CM Providers should be prepared that the
CM implementation and its API contains flaws. Therefore, an update strategy should be defined.
In case a vulnerability is found, the provider should be able to quickly fix any problems and mitigate
possible damages. To this end, providers can employ containers themselves to provide the CM. This
allows them to quickly deploy new versions of the interface.

This mitigation strategy can help to mitigate: T2.2.

M2.4 High-Availability Because the CM is important for tenants to manage and orchestrate
their NFV deployments, providers must ensure high-availability. Again, they can rely on the con-
tainer platform themselves and deploy their CM software using containers. This would allow them
to take advantage of the rapid scaling and fault-recovery features that their container environment
provides.

This mitigation strategy can help to mitigate: T2.3.

4.3 Enforcing Container Isolation

Another big part of securing CaaS is to strengthen container isolation. Containers running on one
host share a common Linux kernel. Therefore, any attack that gains kernel level execution privileges
has a high chance of compromising other containers running on the same host. Providers have to
be particularly rigorous in enforcing proper isolation.

The problem of enforcing container isolation is partly aggravated by the fact that the Linux kernel
has a large interface. Current kernel versions expose more than 300 system calls that if exploitable

18https://www.keylength.com/en/
19https://www.ssllabs.com/
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4.3 Enforcing Container Isolation

would allow an attacker to access and abuse kernel resources. Thus, one mitigation strategy is to
minimize the interface between the host and containers.

Another important mitigation strategy is to restrict the damage attackers can do once they success-
fully escaped a container. Again, the Linux kernel provides a couple of security features that can be
used to restrict user actions. Among them are Linux security modules providing mandatory access
control and user namespaces themselves.

M3.1 Filter system calls One method to restrict the large system call interface is to use seccomp.
The seccomp (’Secure Computing’) integrates a BPF-like filter mechanism for system calls into the
Linux kernel. This can be used to reduce the number of system calls that a container can effectively
use. Moreover, the parameters to system calls can be sanitized. Thus, seccomp reduces one attack
surface by reducing the number of exploitable system calls.

This mitigation strategy can help to mitigate: T4.2.

M3.2 Restrict root privileges In addition, the Linux kernel allows to restrict users’ capabilities to
perform specific operations. In particular, root users have a vast set of permissions. Linux capabil-
ities permit a fine-grained partition of the capabilities bundled into the root user. Thus, instead of
being root, different capabilities can be restricted. For example, a user can be root without having
the permissions to change network settings. Currently, the Linux kernel has 37 capabilities. Un-
fortunately, not all capabilities have a specific, well-defined scope. For example, CAP_SYS_PTRACE
permits the use of ptrace(), while CAP_SYS_ADMIN comprises many permissions such as changing
the host and domain name, using mount() and umount(), or performing various configurations
of storage and memory devices. Restricting capabilities assigned to container processes limits the
operations an adversary can use on the host system.

This mitigation strategy can help to mitigate: T4.2, T4.3, T4.4.

M3.3 Increase protection through namespaces and cgroups Namespaces and cgroups are
the two features that enable container-based virtualization in the Linux kernel. They provide isola-
tion and separation of processes. However, their default configuration is often not as restrictive as
possible to support many use cases. Thus, it is important to employ many namespaces and cgroups
and tighten their configuration.

For example, the user namespace separates the user IDs on the host system from the user IDs of
a container. A user within the container can be root, while on the host system the same user is
unprivileged. As another example, the devices control group can restrict what device nodes can be
created and be accessed. Other control groups limit the maximum resources a container can use.
Thus, they prevent degradation or denial of services in a shared environment.

This mitigation strategy can help to mitigate: T4.2, T4.4.
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M3.4 Utilize Linux Security Modules Linux security modules (LSM) are are software compo-
nents that use a well-defined kernel interface to control and decline certain operations. In partic-
ular, LSMs providing mandatory access control (MAC) define rules that further restrict what files a
process can access. Two well-known LSM MACs are AppArmor and SELinux. These MACs define
policy rules about what a process can and cannot access. The resulting policies are then enforced
by the kernel. Thus, adversaries are on the one side further limited on the resources that are ex-
ploitable. On the other hand, they have to invest additional time and resources to circumvent and
disable the LSMs.

So far, these security mechanisms mostly protect the host from containers. If a container is com-
promised, an adversary still has to put in the additional effort to compromise the host. However,
these protections may not circumvent exploits across containers on the same host. For example,
containers on the Docker engine share a common user namespace and storage space for the con-
tainer images. Thus, an adversary escaping one container may have access to the container images
of another container. This can be used to manipulate images and introduce persistent threats or
steal information. One safeguard against these cross-container exploitations are extended features
of LSM MACs known as multi category security. Using MCS, every container gets a unique identity
when it is initialized. Based on this unique identity, the kernel can perform more fine-grained access
decisions because two process executing the same binary that would usually have the same policy
are now distinguishable.

As a result, access to container specific resources can be restrict for each container.

This mitigation strategy can help to mitigate: T4.2.

M3.5 Configure firewall rules In addition to host and container security, it is important to
secure remote access to the host and containers themselves. While not going into the details of full
network security in a cloud environment, each container and host must be protected as part of the
security-in-depth approach. On Linux systems, netfilter/iptables and ebtables can be used to create
packet firewalls. They limit network access to exposed ports on the host and in the containers.
Similar to virtual switches in hypervisors, containers can be connected by a Linux bridge device.
Platforms such as Docker use a default bridge device for all container if no separate network is
specified during container initiation. As a result, containers may share a common network segment,
which can be exploited. Therefore, ebtables is recommended as an additional firewall configured
for the bridge device.

This mitigation strategy can help to mitigate: T4.3, T4.4.

M3.6 Performing host kernel and system hardening Hardening of the host system reduces
the attack surface of container platforms. If it becomes more difficult for an adversary to execute
exploits, threats can be mitigated. Probably the most important hardening is with respect to the
Linux kernel itself because it is shared by all containers. Common practices include activating
additional security features during the compilation of the kernel and patching the kernel to lock
down common attack vectors. The PaX and grsecurity are two set of prominent patches.

In addition to hardening the kernel, the OS can be hardened as well by common practices such
as minimizing the number of running services and installed applications. A number of minimal
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GNU/Linux distributions specifically design for container hosting are available such as CoreOS Con-
tainer Linux20, Red Hat Project Atomic21, or Rancher Labs RancherOS22. They only come with the
necessary services to host containers while integrating into an overall CaaS architecture.

This mitigation strategy can help to mitigate: T4.2.

20https://coreos.com/why/
21https://www.projectatomic.io/
22http://rancher.com/rancher-os/
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5 Conclusion

The introduction of containers as a virtualization technology for NFV requires a new evaluation of
security threats and mitigation strategies. We have described shortly the characteristics of container-
based virtualization and emphasized the fact that containers are immutable software bundles. We
have continued to present a generic CaaS platform that would provide the ability to run VNFs as
containers and allows for dynamic provisioning, scaling and fault-tolerance. Based on this generic
CaaS platform, we have outlined a threat model and defined common attack scenarios that we be-
lieve to be principal threats. Finally, we have argued that with the appropriate mitigation strategies
threats can be mitigated and that containers can actually add security value.

We recognize that our discussion may not apply to every conceivable CaaS platform architecture.
For example, in our architecture the network response and throughput required for certain NFV ap-
plication may be limited. This is due to the layered design of hosting containers within VMs, which
adds an additional layer. However, this architecture also provides advantages from an operational
and a security perspective. From the operational perspective, it becomes easier to commission ma-
chines. In addition, providers may already have an existing IaaS based on VMs. Thus, extending it
to support containers as suggested by our architecture may proof simpler.

Our architecture also adds additional security layers. The VM itself can be seen as a demilitarized
zone separating the boundary between tenant and provider. This gives providers the ability to
enforce strict security mechanisms at lower levels. It also simplifies the separation between tenants.
As discussed, containers are limited in their ability to isolate and contain. VMs add an additional
isolation and separation layer.

Finally, any suspicious behavior on the VM virtualization layer is a strong indicator for malicious
activity to the provider. They can use it to initiate strong countermeasures before adversaries are
able to break out. For example, our architecture would permit providers to terminate VMs and
replace them in case a compromised VM is likely. This is possible because the upper container layer
will ensure that redundancy and fault-tolerance will be recreated.

We believe that our general discussion provides an initial starting point in developing security mech-
anisms for a CaaS platform for NFV. We recognize that our discussion did not cover all possible
attack scenarios and mitigation strategies. We plan to extend on these in the future and generate
a corresponding catalog.
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