
Shedding too much Light on a Microcontroller’s Firmware Protection

Johannes Obermaier
Fraunhofer Institute AISEC

johannes.obermaier@aisec.fraunhofer.de

Stefan Tatschner
Fraunhofer Institute AISEC

stefan.tatschner@aisec.fraunhofer.de

Abstract

Almost every microcontroller with integrated flash fea-
tures firmware readout protection. This is a form of con-
tent protection which aims at securing intellectual prop-
erty (IP) as well as cryptographic keys and algorithms
from an adversary. One series of microcontrollers are
the STM32 which have recently gained popularity and
thus are increasingly under attack. However, no practical
experience and information on the resilience of STM32
microcontrollers is publicly available. The paper presents
the first investigation of the STM32 security concept, es-
pecially targeting the STM32F0 sub-series. Starting with
a conceptual analysis, we discover three weaknesses and
develop them to vulnerabilities by demonstrating corre-
sponding Proofs-of-Concept. At first, we discover that a
common security configuration provides low protection
which can be exploited using our Cold-boot Stepping ap-
proach to extract critical data or even readout-protected
firmware. Secondly, we reveal a design weakness in the
security configuration storage which allows an attacker
to downgrade the level of firmware protection, thereby
enabling additional attacks. Thirdly, we discover and an-
alyze a hardware flaw in the debug interface, attributed
to a race condition, that allows us to directly extract read-
protected firmware using an iterative approach. Each
attack requires only low-priced equipment, thereby in-
creasing the impact of each weakness and resulting in a
severe threat altogether.

1 Introduction

Commercial grade microcontrollers are deployed in count-
less applications, ranging from industrial systems over
automotive control units up to end-user devices. As their
capabilities steadily increases, the complexity of their
tasks rises and thus their firmware gets more sophisti-
cated.

While previous devices were deployed in stand-alone
applications, current systems may be part of large sen-
sor networks or may interact with the Internet-of-Things.
Thus, these systems contain valuable Intellectual Prop-
erty (IP), such as sophisticated measurement or control
algorithms. The devices may be license-locked and con-
tain cryptographic material. Altogether, these devices are
accompanied by large investments into software develop-
ment.

At the same time, gaining access to these assets be-
comes more worthwhile for adversaries. Product piracy
has emerged to a large threat, where competitors clone
products and cause financial damage to the affected com-
pany [7]. As those attackers operate covertly without
publishing their exploits, vulnerabilities are often surviv-
ing long. Nevertheless, professional researchers as well
as hobbyists have also broken several systems in the past,
often due to the underlying insufficient hardware secu-
rity [16, 17]. Especially, Skorobogatov et al. have shown
that the chosen security concepts of hardware manufac-
turers often do not cover all corner cases [13], have weak-
nesses [11], hidden functions, or even backdoors [12].

Many older microcontrollers were extensively tested
for security and often exploited in the last few years.
Therefore, the industry shows growing interest in more
recent microcontrollers, including the ARM Cortex-M
based STM32 series. The wide deployment of these de-
vices finally raised interest into the provided security,
mostly in terms of firmware protection.

There are no penetration testing results for STM32 pub-
licly available. Thus, giving a statement regarding the
protection of IP is impossible, despite it is often requested.
Therefore we undertake a thorough security analysis of
the STM32 series in which we answer the crucial ques-
tion: Does the STM32 series provide a sufficiently strong
security concept for firmware protection and, if not, how
complex is the exploitation of weaknesses? We start with
a high-level conceptual analysis of the security configu-
ration and gradually dig deeper into the hardware imple-

mentation. Thereby we cover a large spectrum of attacks
by combining software-based as well as hardware-based
approaches.

Since the STM32 series is large and contains several
sub-series, we will limit our experiments primarily to
the STM32F0 family. This series features entry-level
microcontrollers at moderate cost for a wide range of
commercial products. Where applicable, an estimation of
the impact onto other STM32 series is given.

In this paper, we present the following novel contribu-
tions:

• conceptual analysis of three STM32F0 security core
components

• detection of three weaknesses and presentation of
corresponding ideas for their exploitation
→ Cold-Boot Stepping: Enforcing single-stepping
under limited debugging capabilities in Readout Pro-
tection (RDP) Level 1
→ Security Downgrade: Leveraging the lock-level
design to downgrade the firmware protection setting
→ Debug Interface Exploit: Discovery of a race
condition in the debug interface in RDP Level 1

• a Proof-of-Concept (PoC) for each weakness, which
develops them into three vulnerabilities

• discussion of the impact of each vulnerability on
system security and possible countermeasures

In order to encourage discussion and to ensure repro-
ducibility of our results, we publicly provide the source
files and additional materials for the PoCs in Section 6.

We informed ST Microelectronics about our findings,
using an adapted responsible disclosure approach.

2 STM32 Security Concept

The flash Readout Protection is the key component of the
security concept [15] and is incorporated in every device.
It protects the system’s firmware, stored in flash memory,
against unauthorized readout. Depending on the chip fam-
ily, there are additional security mechanisms, e.g., a Mem-
ory Protection Unit (MPU) and privileged/unprivileged
execution modes [14]. Altogether, these technologies aim
at enhancing system security.

The flash readout protection is the root of system secu-
rity, since it protects the firmware as well as the system’s
security configuration. Therefore, breaking the readout
protection mechanism will fully compromise security.

2.1 Flash Readout Protection Levels
The flash readout protection [15] concept consists of three
selectable RDP Levels 0, 1 and 2. The protection in-
creases with the level.

RDP Level 0 is the original configuration and imposes
no restrictions. The debug interface is active and allows
full access to the device. Usually, this level is only used
for development.

RDP Level 1 keeps the debug interface active but re-
stricts access to flash memory. As soon as a debugger is
connected, flash memory is locked. It can neither be read
out directly nor indirectly via DMA nor is the CPU able
to execute code from it. Protection can be upgraded to
RDP Level 2 but can also be downgraded to RDP Level 0
at the cost of losing all flash memory contents.

RDP Level 2 is restricted the most and provides high-
est security. Debug access is completely disabled by
shutting down the debug interface permanently. The level
is irreversible and cannot be downgraded.

Despite RDP Level 2 offers the best protection, RDP
Level 1 is still in use. Experience shows, that companies
dislike the idea of locking down their devices completely,
since it impedes fixing buggy and failed devices. Further-
more, ST warns in their datasheet [15], that defective part
analysis cannot be done on devices set to RDP Level 2.
Additionally, the STM32F1 series, for example, lacks sup-
port for RDP Level 2. Altogether, this results in devices
set to RDP Level 1.

RDP Level 1 raises special interest, as it remains un-
clear, whether this configuration can be considered secure
or insecure—a question that is investigated in Section 3.1.

2.2 Readout Protection Design

The RDP level is part of the microcontroller’s system
configuration, stored in the dedicated option byte section.
Therein, the available three RDP levels are encoded using
16 bits of non-volatile memory.

This redundancy in security setting storage is crucial
for maintaining security under attack. Correctly imple-
mented redundancy raises the bar significantly because
several bits must be flipped during an attack. Other al-
ready broken systems use only a single bit to distinguish
between locked and unlocked configurations [16].

For the STM32, the 16 bits are implemented as two sub-
sequent bytes, named RDP and nRDP. In every intended
configuration, nRDP represents the bitwise complement
of RDP. Table 1 shows the mapping of each RDP and
nRDP setting to the configured RDP level.

nRDP RDP Resulting protection
0x55 0xAA RDP Level 0

Any other combination RDP Level 1
0x33 0xCC RDP Level 2

Table 1: Flash readout protection options of the STM32F0
series according to the datasheet [15]

RDP Level 0 and RDP Level 2 are each represented by
exactly one complementary pair of bytes. Any other con-
figuration, including non-complementary pairs of bytes,
defaults to RDP Level 1.

Although the 16 bit approach appears to be robust—at
first, we discover a design issue and defeat the concept in
Section 3.2.

2.3 Flash Protection Logic
While RDP Level 0 and RDP Level 2 are straightforward,
the technical implementation of RDP Level 1 is only
sparsely described.

According to the datasheet [15], the microcontroller
uses two modes of operation in RDP Level 1, called “User
mode” and “Debug [...] mode”. The microcontroller ini-
tially runs in unrestricted user mode and switches over to
debug mode when a debugger is attached. Once the sys-
tem enters debug mode, access to flash memory is denied
for the debugger and microcontroller. The datasheet [15]
also claims that flash memory is then “totally inaccessi-
ble” and “[...] even a simple read access generates a bus
error and a Hard Fault interrupt.”. The datasheet does not
contain any information about the inner workings of the
flash protection mechanism and under which conditions
debug mode is entered. Altogether, this blurry image of
the flash readout protection implementation encourages a
deeper analysis and reverse-engineering—whose results
are presented in Section 3.3.

3 Attacking the Security Concept

The key components of STM32 security require a detailed
investigation. In Section 3.1, we present an analysis of
RDP Level 1 security, Section 3.2 deals with the strength
of the physical implementation of RDP Level 2, and Sec-
tion 3.3 discovers limitations of the flash protection logic.

3.1 Cold-Boot Stepping
The datasheet [15] assures, that flash memory is read-
protected in RDP Level 1 during debugger access. One
may easily overlook, that this statement refers only to
flash memory but not to SRAM and peripherals. No
information is given on the behavior of these components
in RDP Level 1.

In order to investigate the missing details, a microcon-
troller is programmed with a sample firmware and set to
RDP Level 1. As soon as the debugger is attached, the
microcontroller is halted, since the core can no longer
fetch any instructions from flash memory. The behavior
is in accordance with the datasheet. Nevertheless, the
SRAM is fully readable with all application data in place.
Attaching the debugger does not trigger zeroization or any

comparable protection mechanism and the data remains
intact. Therefore the question arises to which extent the
exposed data in SRAM poses a threat to system security.

3.1.1 Concept of SRAM Snapshot Generation

The readable SRAM can be considered a Cold-Boot sce-
nario [6]. The system has ceased operation, but data still
resides in memory. There is the trivial case, in which
secret data in SRAM becomes exposed directly. This
situation requires no more investigation, as the threat is
self-evident.

As a countermeasure against such attacks, common
implementations of cryptographic algorithms keep keys
in RAM only for a short time during usage, down to a few
milliseconds or even less. Therefore, this data cannot be
retrieved by manually attaching a debugger, as hitting the
right moment in time is practically impossible. Further-
more, the microcontroller has several kilobytes of SRAM,
whose memory map is unknown and hard to reconstruct
from scratch. Stepping through the firmware is also im-
possible in RDP Level 1, thus the internal control flow is
hidden.

To overcome these issues, we present Cold-Boot Step-
ping (CBS), a method to precisely take snapshots of the
system’s SRAM at the moment of our choice. The idea
is, that the system is effectively halted every few clock
cycles, the SRAM is read out, and a snapshot is created.
The general idea is partly derived from the very specific
approach [17], used on a PIC microcontroller.

The generalized approach is outlined as follows. At
first, CBS sets the system into a well-defined initial state,
e.g., by applying a reset. Next, the system is allowed to
run for a precisely controlled duration and is then stopped.
Next, the SRAM is read out and the snapshot is created.
Afterwards, the next iteration starts with an increment in
the execution duration T , representing a few clock cycles.

By observing the changes in SRAM from snapshot to
snapshot, one can reverse-engineer the basic control flow,
find out the usage of specific addresses and may also dis-
cover briefly visible secret data. This is similar to stepping
through the firmware, since only a few instructions are
executed between each SRAM snapshot.

This general CBS approach can be adapted to STM32
microcontrollers by using several tricks to control code
execution and SRAM data freezing.

1. Reset system: The system is brought into the initial
state at the beginning of each iteration.

(a) Power OFF: A full reset (Power-On Reset)
can only be performed by a power cycle. It
will allow the system to access and execute
from its flash memory again.

(b) Assert Reset: Reset must be asserted before
the system is powered up. This allows to power
up the system without starting code execution.

(c) Power ON: The system is powered up under
reset. The internal circuitry becomes ready to
start execution, but is inhibited by the reset
signal.

2. Run System for (n ·T): The firmware is executed
for a timespan of exactly (n ·T).

(a) Deassert Reset: Releasing the reset line starts
the execution of the firmware.

(b) Wait for (n ·T): The firmware is executed for
a timespan of (n ·T). The code will advance to
the moment of interest.

(c) Assert Reset: As soon as the time is up, reset
is applied again. This stops code execution and
resets the CPU, but data in SRAM is persistent
and becomes frozen.

3. Dump Memory: System memory, usually SRAM,
is read out and written to a file.

(a) Start Debugger: The debugger attaches to
the microcontroller under reset. The debug-
ger takes control and forces the system into
permanent halt mode.

(b) Deassert Reset: Reset is deasserted to allow
access to the AHB system bus [1] and SRAM.
The SRAM state is still preserved, because the
system was halted by the debugger and does
neither start nor continue execution.

(c) Dump SRAM: The debugger reads the SRAM
and writes its data into a file.

4. n = n + 1: After these steps have been completed,
the system prepares for the next iteration. Therefore
the time span of (n ·T) is increased by one step to
(n+1) ·T .

5. Repeat: Each iteration is started with an increased
execution duration. Iterations are performed until
the whole time span of interest has been covered.

The schematic of the setup is shown in Figure 1. The
laptop on the left orchestrates the attack. It is attached to
the debug interface of the device under attack using an ST-
LINK debugger. The laptop has a UART connection to
the attack control board. A microcontroller on the attack
control board handles the reset line and power supply
of the device under attack. Switching power on and off
can be difficult, since the microcontroller in the device
under attack is usually part of a larger device, e.g., an
AC powered system. Therefore we employ a relay that

12 V

Po
w

er
 S

u
p

p
ly

Device under
A�ack

Power

Reset

SWDIO

SWCLK

Debug IF
ST-LINK

STM32

µC

A�ack Control

1 kΩ B
C

8
4

7

TX

RX
USB UART
Adapter

La
p

to
p

Power
Relay

Power
Control

U
SB

U
SB

Figure 1: CBS setup schematic

enables the attack control microcontroller to switch high
voltages and currents.

CBS requires precise timing with microsecond accu-
racy, which cannot be provided by a common computer
system. Even with an RT-patched Linux kernel, the high
timing jitter and reproducibility is unsatisfying. Conse-
quently, the duration of execution cannot be controlled by
the debugger, as neither the computer system nor its USB
interface guarantees real-time operation.

Therefore, an attack control board, shown in Figure 1,
is employed. Its microcontroller provides a low-jitter
timing source as the system is primarily dedicated to du-
ration control. Jitter-generating modules, e.g., interrupts,
are disabled thereby enabling fully deterministic timing
behavior. At the beginning of each iteration, the computer
system sends the desired execution duration to the attack
control board. Next, it autonomously starts up the device
under attack, waits for the configured duration and stops
the device again. Thus, timing-critical tasks are exclu-
sively handled by the attack control board. This provides
sub-microsecond accuracy. By using the board, precisely
stepping to a moment of choice becomes feasible.

3.1.2 PoC: CBS Firmware Extraction

As the attack remains theoretical up to this point, we
present a PoC. We created a variant of the attack in which
a fully automatized setup indirectly extracts firmware
from a locked device. This anonymized example is based
on a real case, in which we exploited a commercial prod-
uct set to RDP Level 1.

Common practice is, that a bootloader is placed on the
microcontroller which checks the application firmware
image before execution. The integrity check is usually
based on a checksum algorithm, such as CRC32. The al-
gorithm iterates over each single byte and may, depending
on the implementation, store intermediate CRC results in
SRAM.

Figure 2: PoC setup for CBS

If an attacker gets hold of subsequent intermediate
results of a CRC computation, the source data can be
reconstructed. The burst-error detection capability [18]
of the CRC32 guarantees, that the solution is unique and
that a skipped byte will not yield a solution. The CBS
method steps through the computation of the CRC gaining
access to the intermediate CRC results. They are used to
reconstruct the source data of the CRC which reveals the
flash memory contents.

The setup for this attack is shown in Figure 2, which
is the practical realization of Figure 1. The device under
attack is an STM32F0 discovery board locked to RDP
Level 1 which contains a sample-firmware that computes
the CRC over itself. The surrounding devices execute the
attack as described previously.

The attack runs autonomously. The laptop dynamically
adjusts the step width depending on the success of the last
extraction iteration. As the attack requires several data
transfers between devices, the resulting readout speed
is limited to approximately seven bytes per minute. Mi-
crocontrollers come with comparably low flash storage,
such as 64 KiB for the STM32F051R8T6. Therefore, the
attack is practically executable in a few days. In our exam-
ple, a small firmware image was completely and correctly
extracted in a few hours.

The PoC shows, that despite RDP Level 1 prevents
direct reading of flash memory, read-access to SRAM
poses an invitation to many attacks. We suspect that the
attack might work on any STM32 system set to RDP
Level 1. Thus the practical protection offered by RDP
Level 1 was shown to be futile under these conditions.

3.1.3 Countermeasures against CBS

To prevent the attack, the developer has to set the device
into the fully-locked RDP Level 2. This disables the

debug interface completely. Without access to the debug
interface and SRAM, the attack becomes infeasible. RDP
Level 2 is supported by most STM32 microcontrollers,
except the STM32F1 series.

Please note, that the attack does not depend on the re-
versibility of CRC. It might even work more efficiently on
hash functions, which often store the result of each round
in SRAM. Data hashed with only one round of a hash
function is usually reversible. Operating only on CPU reg-
isters aggravates the attack, but cannot fully prevent it as
the attack can be adjusted to this situation. An advanced
debugger can stop the system using precisely timed debug
commands. Since the reset signal is not asserted, the CPU
registers remain intact and can be read out. However,
there is no way around RDP Level 2, if the microcon-
troller must be well-protected. Additionally, a random
delay early in boot might further increase protection.

Experience made us aware of the additional semi-
technical issue, that developers have large trust in their
toolchain for device protection. The popular debugging
software OpenOCD offers only a single command named
“lock” to “Lock the entire flash device”. Despite some
developers assumed to have their devices fully-secured,
the “lock” command does not support RDP Level 2 and
only activates RDP Level 1. Therefore we submitted a
patch [10], which adds RDP Level 2 support to OpenOCD
and clearly displays the configured RDP level.

3.2 Security Downgrade

The previous section demonstrates that the debug interface
should not be accessible, thus, it has to be disabled by
setting RDP Level 2. As the attack surface is thereby
reduced, an attacker might now target the RDP Level with
the goal of downgrading security and enabling the debug
interface again. This cannot be achieved using official
means, since the datasheet [15] claims that “level 2 cannot
be removed at all” and is “irreversible”.

3.2.1 Concept of RDP Level Downgrade

The RDP Level protection mechanism is based on the
RDP and nRDP bytes in the option byte memory region.
At the power-on event, the option bytes are loaded from
flash memory and the corresponding RDP Level is set.

At a first glance, the physical RDP Level storage seems
to be robustly implemented as it employs 16 bits to store
three protection levels. In theory, this redundancy would
strengthen system security. However, a closer look reveals
that a non-optimal mapping between the RDP Level and
the option bytes was chosen.

Figure 3 shows the hexadecimal and binary representa-
tion of each RDP Level configuration. RDP Level 0 and 2
map to exactly one setting, where RDP Level 1 covers the

00

00....

33

33

33

55

55

55

FF

FF

....
....

00

01....

CB

CC

CD

A9

AA

AB

FE

FF

....
....

Level 2

Level 0

Level 1

RDPnRDP

Flash Readout

Protection

0000 0000 0000 0000

0000 0000 0000 0001

0011 0011 1100 1011

0011 0011 1100 1100

0011 0011 1100 1101

0101 0101 1010 1001

0101 0101 1010 1010

0101 0101 1010 1011

1111 1111 1111 1110

1111 1111 1111 1111

HEX BIN

RDPnRDP

....

....

....

....

....

....

....

....

....

....

....

....

Figure 3: A security downgrade from RDP Level 2 to 1
becomes possible by flipping a single bit

remaining ones. In terms of security, a downgrade from
RDP Level 2 to 1 or 0 is of particular interest.

The most powerful attack would cause a transition from
RDP Level 2 to 0 as this removes any protection com-
pletely. Since the hamming distance of the settings is
eight, an attacker has to modify eight bits in total without
touching any neighboring bits. More exactly, four specific
bits have to be flipped from 0 to 1 and four bits must be
changed from 1 to 0 while the remaining eight bits must
remain unchanged. Such a modification to the option
bytes is difficult, most likely only realizable with highly
specialized equipment, and therefore rather expensive.
Altogether, this results in a high security margin.

A security downgrade from RDP Level 2 to 1 is an alter-
native by which the attacker enables the debug interface
again. This transition is less difficult, as 65534 of 65536
configurations map to RDP Level 1. Due to this design,
the minimum hamming distance between RDP Level 2
and 1 is one, thus there is little security margin as a single
bit flip causes a security downgrade. Furthermore, not a
specific bit needs to be targeted, flipping any bit suffices.
Even accidentally flipping multiple bits will still down-
grade security. Altogether this imposes a significant risk,
because the design undermines RDP Level 2 security.

3.2.2 Proof-of-Concept: UV-C Security Downgrade

We show by experiment, that the risk in fact evolves to
a practical threat. As downgrading security involves the
manipulation of data, a technique to induce data faults [4]
is required. One class of methods is optical fault injection
[13]. It uses light to introduce energy at the desired loca-
tion on the previously decapsulated chip. As the photons
interact with the semiconductor, the targeted region on
the chip’s die starts to malfunction. Depending on the
attack parameters, this causes a temporary or permanent
data fault.

Figure 4: Annotated die of the STM32F051R8T6
(Die size approximately 2700µm×2700µm)

Before an optical fault injection can take place, the
device has to be decapsulated. In this process, the pack-
age above the chip is removed by chemical etching. This
exposes the chip’s die for the next step, as shown in Fig-
ure 4.

The targeted option bytes are implemented as flash
memory. In this technology, data storage is based on elec-
trons, which are trapped on the floating gate [8]. When
UV-C light of a wavelength of approximately 254nm il-
luminates the floating gate, electrons are ejected, the cell
becomes discharged, and the stored bit permanently flips
from 0 to 1 [5]. Please note that the method is limited to
discharging cells and can only flip bits from 0 (charged)
to 1 (uncharged).

The first experiment targets the question, whether RDP
Level 2 is in fact irreversible. In difference to flash mem-
ory, technologies like eFUSE [9] can implement real one
time programmable memory by physically blowing an
electrical connection. While manipulating a flash cell
requires only UV-C light, resetting an eFUSE needs more
sophisticated equipment. So the experiment will show,
whether an financially limited attacker is able to perform
the security downgrade.

In this experiment, a decapsulated chip in RDP Level 2
is exposed to UV-C light. At first, the debugger cannot
attach to the microcontroller, since the debug interface is
disabled. Then illumination is performed in an EPROM-
eraser using an UV-C mercury lamp with the relevant
emission line at 254nm. After a few hours of UV-C illu-
mination, the debugger successfully attaches to the system
as it is no longer fully locked. Reading the “read protec-
tion level status” in the FLASH OBR register reveals, that
RDP Level 2 is no longer active and was downgraded to
RDP Level 1. As expected, a single bit in the option byte

was flipped from 0 to 1. In this experiment, the configu-
ration changed from 0x33CC to 0x33CD. The experiment
proves, that no physically permanent locking mechanism
exists and RDP Level 2 can in fact be downgraded by
flipping a single bit.

Nevertheless, the CBS approach is not feasible after-
wards. The attack does not only flip bits of the RDP
setting. Despite security becomes downgraded, such a
coarse full-chip illumination causes too much damage to
the firmware.

In order to target the option bytes exclusively, their loca-
tion must be determined by reverse engineering the flash
memory layout and orientation. Based on experience, the
flash module is usually a regularly structured region on
the chip surrounded by control and read/write circuitry.
This narrows down the search to the rectangular section
in the lower center region, as marked in Figure 4. In this
region, we employ a bisection approach. This technique
uses the light-sensitive flash memory as an image sensor.
At first, the chip is left unsecured and loaded with an
all-zero firmware image. This makes each cell sensitive
to incoming UV-C light. At next, a simple plastic mask is
created that covers a specific region, e.g., the upper half
of the flash module region. Then illumination starts.

The flash is read every few minutes and the resulting bit
flips are analyzed. Only regions that are not covered by
the mask will exhibit data faults. In order to map the fault
to a physical location, the flash layout must be guessed
manually. Flash memory is constructed from numerous
vertical bitlines and horizontal wordlines, which create a
matrix containing a flash cell on every intersection. As
this is a digital system, the number of bitlines and word-
lines is usually a multiple of two and their product must
yield the storage size. This precondition alone does not
yield a unique solution, thus additional trial-and-error
is necessary. A correct guess will yield a bitflip-pattern
resembling the structure of the mask. This means, for ex-
ample, that only bits in the lower half change their values,
if the upper half is covered by a mask.

A successful guess is depicted in Figure 5, which shows
the flash layout of an STM32F051R8T6. The orientation
of the figure matches the flash cell region orientation in
Figure 4. The layout was reconstructed from several bisec-
tion steps that yield the following results. The firmware
flash region has 1024 bitlines and 512 wordlines. As the
flash memory is specified as being 32 bit wide there are
32 bit-columns, marked in red in Figure 5. Each single
bit-column consists of 32 bitlines, since 32 bit-columns
times 32 bitlines result in a total of 1024 bitlines.

Additional UV-C illumination tests show, that the op-
tion byte flash region is similar in structure and is placed
beneath wordline 0 (note the small region beneath word-
line 0 in Figure 5). The region consists of the same num-
ber of bitlines and only a few wordlines, since the option

0

100

200

300

400

500

1000 800 600 400 200 0

W
o
rd

li
n
e

Bitline

3
1
3

0
2

9
2

8
2

7
2

6
2

5
2

4
2

3
2

2
2

1
2

0
1

9
1

8
1

7
1

6
1

5
1

4
1

3
1

2
1

1
1

0
 9

 8
 7

 6
 5

 4
 3

 2
 1

 0

Bit-columnsBit-columns

Figure 5: Flash layout containing flipped bits (blue) after
UV-C irradiation while the upper half was covered

byte memory is rather small. Since the RDP and nRDP
bytes are placed in the 16 LSBs of the option memory,
these bytes reside in the right half of the flash cell region.
This information helps crafting a mask, that covers the
firmware flash region but not the option bytes.

Despite not essential for the attack but to strengthen our
results, we delayered the chip’s flash using a combination
of laser ablation and sulfuric acid etching. The predicted
number of vertical bitlines and horizontal wordlines be-
came visible. Additionally, we verified the location of
the flash cells by locally injecting non-permanent faults
using an IR pulse laser. A reason for the vertical pattern
of unflipped bits in each bit-column in Figure 5 was also
discovered: Several large vertical metal traces on an inner
chip layer block the UV-C light before it reaches the ac-
tual cell. Altogether, this proves the results of the UV-C
bisection method.

3.2.3 Impact of Increased Precision

After the position of the RDP bytes is known, we target
this memory more exactly by using a carefully crafted
mask to cover all other memory. By placing the mask
diagonally, only the lower right edge of the memory re-
gion is exposed, where the LSBs of the RDP bytes reside.
Depending on the positioning accuracy, we achieved a se-
curity downgrade while the number of additionally flipped
firmware bits varied between a few hundred down to none.
Our best results in fact yielded a security downgrade to
RDP Level 1 with no additional firmware bit faults at all.

Altogether, a weakness in the security design has been
shown. Having very few or even no firmware bit faults
enable the practical use of RDP Level 1 attacks like CBS.
The vulnerability applies to all STM32 microcontrollers
using such a security design. However, the feasibility of
the attack might strongly differ between the controllers,
depending on the physical implementation of the flash.

3.2.4 Countermeasure: RDP Downgrade Detection

There exists no countermeasure to prevent a security
downgrade, since the issue persists in hardware. It is
up to the manufacturer to enhance the concept, e.g., by
using RDP Level 2 instead of 1 as default/fallback setting.

Nevertheless, the effects of an attack can be mitigated.
Upon startup, the firmware should immediately check,
whether the expected level of protection is still active.
This includes the “read protection level status” in the
FLASH OBR register as well as the option bytes them-
selves. In case of a mismatch between the setting and the
expectation, the RDP Level 2 setting should be rewritten
to the option bytes, as this will restore missing charge in
the flash cells and re-enable security.

3.3 Debug Interface Exploit
The STM32F0 series microcontrollers do not have a JTAG
interface but use the Serial Wire Debug (SWD) interface
for debugging and flash programming. When a debugger
becomes attached to this interface in RDP Level 1, the
flash protection logic cuts access to flash memory. This
sparsely documented mechanism raises interest and asks
for a thorough investigation.

3.3.1 Reverse Engineering

For the analysis, using the common off-the-shelf debug-
ger ST-LINK fails. As soon as the debugger becomes
connected the flash is immediately locked down. This
issue is caused by the debugger, which triggers the pro-
tection mechanism by performing several SWD requests
automatically upon connecting. As the immediate lockup
prevents a precise analysis, this overly verbose debugger
is of no use for our experiment.

In order to gain control down to the physical layer of
SWD communication, we implement an own rudimentary
but versatile debugger. This is feasible, since the SWD
interface is well-documented [2]: SWD uses two signals,
SWDIO and SWCLK, for synchronous communication
between the debugger and the microcontroller. SWDIO
is a bidirectional data signal, SWCLK is the clock used
in the communication.

Figure 6 shows the wiring of our setup. The debug-
ger (DBG) is controlled by the Laptop using a UART.
The debugger is connected to the power, reset and SWD
signals of the microcontroller under analysis and attack.
The associated firmware gives us full access to all SWD
communication layers, thus, a detailed analysis becomes
possible.

The first experiment tests, which SWD transactions
trigger the flash protection logic. Therefore, the system
is set to RDP Level 1, the firmware runs from flash and
flashes an LED. The flashing LED shows, that the system

Device under
A�ack

+3.3V

Reset
SWDIO
SWCLK

STM32µC

SWD Firmware
Extractor / DBG

TX

RX
USB UART
AdapterLa

p
to

p

U
SB

GNDPower

U
SB

Figure 6: Schematic of the SWD experiments and Debug
Interface Exploitation

is running unperturbed. When flash access is blocked, the
CPU fails to fetch any further instructions and the flashing
of the LED stops.

The experiment shows, that the protection mechanism
is not triggered by all SWD requests but only if a system
bus (e.g., AHB-Lite [1]) is accessed. Accessing only
SWD interface-internal registers has no consequences and
the system remains running. But as soon as the debugger
uses the system bus to access any other module, such as
peripherals, SRAM or flash, debug mode is entered and
the flash becomes locked down.

The debugger triggers a transfer on the system bus
by reading from or writing to the SWD AHB Access
Port (AHB-AP) Data Read/Write register. A closer analy-
sis reveals, that the AHB transaction and therefore the
lockdown is triggered by the last rising SWCLK edge of
the corresponding SWD packet transmission.

3.3.2 Discovery and Analysis of the Vulnerability

In order to analyze the flash protection logic behavior,
the amount of SWD communication is reduced to its
essentials. Most SWD requests are removed which leads
to a minimal configuration, where the SWD interface
is fully initialized, but the flash protection has not been
triggered, yet. In the next step, a bus access is triggered
by a read request from a flash address. This is expected
to trigger the flash protection logic. This happens in fact—
but in rare cases, some data ends up in the read buffer. To
our surprise, this is data from the actually read-protected
flash memory.

If at all, this deviation from the specification is observed
only on the first bus read access. Any subsequent read
attempts always fail and return an SWD ERROR response.
To repeat the experiment, the flash protection logic must
be reset by a power-cycle.

The read access shows to be only randomly successful.
As this is typical for a timing-based race condition, we tin-
ker around with the bus load and timings to investigate this
issue further. Therefore we implement different firmwares
using Assembly language, one containing mostly no-
operations (NOPs) and another one featuring long se-

quences of store (STR) instructions. Altogether, the bus
load varies from roughly 50 % for the NOP firmware to
up to 100 % for the STR firmware. The access succeeds
in every case while running the NOP firmware, but the
access always fails for the STR-sequences firmware. This
shows that the issue is bus load related.

A look into the Cortex-M0 specification [3] supports
the conjecture of a timing issue. CPU instruction and data
fetches have priority over debug access during arbitration.
Thus, the debugger has to wait for a free cycle on the bus
to place the request. If the debugger gains instant access to
the bus, the access takes place before the flash protection
locking becomes triggered—thus, a typical race condition
occurs. In the other case, when the debugger’s access
is delayed by an ongoing CPU access, the protection
logic wins the race and the flash module will reject the
debugger’s later-arriving read attempt.

We investigate this further by linearly adding bus load
by increasing the number of wait states of the flash mod-
ule. At zero wait states, a read access takes two cycles on
the AHB, one for the address phase and one for the data
phase [1]. Wait state cycles are inserted before the data
phase. Taking the NOP firmware as a basis, we observe,
that adding one wait cycle will cause one out of three read
accesses to fail. By gradually increasing the wait states w
up to the maximum of seven, we observed, that the read
success probability ps adheres to the following term:

ps = 1− w
2+w

=
2

2+w

The rearranged term at the right hand side of the equa-
tion allows us to give an educated guess about the internal
timing issue. The denominator (2+w) represents the total
number of bus cycles for the AHB flash access. There-
fore the numerator 2 is the number of vulnerable bus
cycles. Hence, we come to the conclusion, that the flash
protection logic is triggered two cycles too late.

By using the STR firmware we are able to show, that
the flash module itself manages the access restrictions.
The firmware rapidly toggles an LED using the bus, thus
bus load will cause a measurable timing jitter. At a failed
access to the flash, the bus is blocked for three clock
cycles in total, which matches the duration of an error
response [1] on the AHB. Thus, the access is actively
denied by the flash module. Furthermore, this shows, that
the protection logic makes the decision about the access
directly after the data phase as no wait states were ever
observed during a failed access.

The reason for the protection delay of two clock cycles
lies in the chip’s hardware design, but the exact location
remains unclear. One possible cause may be an incorrect
implementation of clock-domain crossing between the
debug clock domain [2] and the remaining logic.

Figure 7: Setup for PoCfirmware extraction out of a de-
vice using RDP Level 1

Altogether, these experiments show, that there is a ma-
jor hardware issue, that annuls the chip’s content protec-
tion mechanism.

3.3.3 Proof-of-Concept: Code Extraction

This PoC demonstrates, that not only a single access can
be performed, but the whole firmware can be extracted
from a microcontroller, using the aforementioned weak-
ness. The setup is shown in Figure 7, which is the practi-
cal realization of Figure 6. The Firmware Extractor reads
out the firmware of the device under attack which is set to
RDP Level 1. The PoC employs two STM32F0 Discovery
boards with STM32F051R8T6 microcontrollers.

In the PoC, the laptop controls the Firmware Extractor
using its UART interface. This interface configures pa-
rameters, e.g., the read source address and the data length
to be extracted. During readout, the data is sent to the
laptop using the UART interface.

The attack is implemented in a straightforward manner
with one extension. As the read access works only once
before the system is locked up, the Firmware Extractor
performs a power cycle on the device under attack after
each readout. Thus, the following steps are executed:

1. System Reset: Initially, a power cycle is applied to
reset the system and flash protection logic.

2. Debugger interface initialization: The steps, de-
scribed in the datasheets [15, 2], are followed. First,
the SWD interface is reset by applying the reset
pattern onto SWDIO and SWCLK. Secondly, the
debugger reads the IDCODE from the SWD De-
bug Port (SWD-DP). Thirdly, the debugger sets the
System power-up request (CSYSPWRUPREQ) and
Debug power-up request (CDBGPWRUPREQ) in
the CTRL/STAT register of the SWD-DP to fully
initialize the debug interface.

3. Set the access width to 32 bit: Although optional,
switching into 32-bit mode is recommended, as a
full word can be extracted in each step. Therefore,
the size field in the AHB Access Port (AHB-AP)
Control/Status Word Register has to be set to 0x02.

4. Set flash source address: The address to be read is
written into the AHB-AP Transfer Address Register.

5. Trigger the flash read bus access: The debugger
performs a read access from the AHB-AP Data
Read/Write register. This triggers the AHB transac-
tion that reads the flash memory.

6. Read the extracted data: The result of the previous
access is read from the DP Read Buffer register. On
success, if flash access was granted, an SWD OK
response is returned. On failure, SWD ERROR is
returned. In the case of SWD OK, the word was cor-
rectly extracted from flash and is sent to the Laptop.

7. Iterate: Upon success, this procedure is restarted
with (address+ 4), in order to read the next word
from flash. On failure, the address is not incremented
and the read access is retried.

The PoC was successfully tested on STM32F051R8T6
and STM32F030R8T6. Due to the very similar chip func-
tionality, we expect, that the whole STM32F0 series is
affected. Nevertheless, experiments on a few samples
indicate, that other series might not be vulnerable.

The PoC extracts firmware at 45 bytes per second on
average. The largest STM32F0 microcontrollers with up
to 256kByte of flash memory can be read out completely
in less than two hours, thus rendering the attack practically
feasible.

3.3.4 Consideration of Countermeasures

The attack can be aggravated by relinquishing the use
of RDP Level 1 and setting the device to RDP Level 2,
since this disables the debug interface. Nevertheless, this
does not fully resolve the issue, because the protection
level is non-permanent, as shown in Section 3.2. In com-
parison to the CBS attack, the requirements put on the
security downgrade are significantly relaxed. While the
firmware must remain intact and executable for CBS, the
debug interface exploit works also on damaged firmware.
Thus correctly placing the mask for the security down-
grade is less demanding. Even if data errors occur, they
are usually limited to a small range of addresses, thus
destroying cryptographic material or other IP is rather
unlikely. Hence, there is no strong protection, especially
if combined attacks are also considered.

4 Conclusion and Outlook

We presented three major security issues in the STM32F0
series that leverage firmware content protection. We
were able to develop all weaknesses to vulnerabilities by
demonstrating their practical exploitability. The demon-
stration was conducted with the aid of three PoCs, one for
each vulnerability. They demonstrate the practical rele-
vance of our work and present novel methods for attacks
and reverse-engineering.

First, the readability of SRAM in RDP Level 1 emerges
to a practical threat, as it often allows the reading of cryp-
tographic material up to the whole firmware. Secondly,
the stronger RDP Level 2 incorporates a design error,
which significantly weakens the security concept and en-
ables a security downgrade. Thirdly, the SWD hardware
implementation contains a race-condition in RDP Level 1
that completely annuls device security and exposes the
firmware to the attacker.

Altogether, these vulnerabilities completely break se-
curity for RDP Level 1 and alarmingly weaken security
for RDP Level 2. Since only low-cost lab equipment is re-
quired, the impact increases. Especially the combination
of vulnerabilities, e.g., downgrading security from RDP
Level 2 and using the SWD exploit to read the firmware
pushes the complexity of attacks down to the hobbyist-
level. Cold-Boot Stepping and the security downgrade
might also work on other STM32 chip series, as they are
based on the same concept. Thus, the impact of this analy-
sis is severe and might be expendable to more systems.

All in all, the presented results need to be taken into
consideration when an STM32 microcontroller has to be
decently secured. We plan to extend our analysis to more
systems, to improve the attacks, and to dig deeper into the
STM32 internals.

5 Acknowledgments

The authors would like to thank Robert Specht and Tolga
Sel for preceding work concerning STM32 flash security.
Special thanks to Michael Hani for supplying decommis-
sioned but helpful lab equipment for our experiments.

6 Availability

We provide supplementary material under the MIT license
at https://science.obermaier-johannes.de.

The material includes all required scripts, ELF, and
source code files for the Cold-Boot Stepping and Debug
Interface Exploit PoCs, as well as sample firmware to be
attacked.

https://science.obermaier-johannes.de

References
[1] ARM LIMITED. AMBA 3 AHB-Lite Protocol Specification v1.0,

2006.

[2] ARM LIMITED. CoreSight Components Technical Reference
Manual, 2009.

[3] ARM LIMITED. Cortex-M0 Technical Reference Manual, 2009.

[4] BAR-EL, H., CHOUKRI, H., NACCACHE, D., TUNSTALL, M.,
AND WHELAN, C. The sorcerer’s apprentice guide to fault attacks.
Proceedings of the IEEE 94, 2 (2006), 370–382.

[5] BEZ, R., CAMERLENGHI, E., MODELLI, A., AND VISCONTI,
A. Introduction to flash memory. Proceedings of the IEEE 91, 4
(2003), 489–502.

[6] HALDERMAN, J. A., SCHOEN, S. D., HENINGER, N., CLARK-
SON, W., PAUL, W., CALANDRINO, J. A., FELDMAN, A. J.,
APPELBAUM, J., AND FELTEN, E. W. Lest we remember: cold-
boot attacks on encryption keys. Communications of the ACM 52,
5 (2009), 91–98.

[7] IGNAT, V. Patent and product piracy. IOP Conference Series:
Materials Science and Engineering 147, 1 (2016), 012105.

[8] KAHNG, D., AND SZE, S. M. A floating gate and its application
to memory devices. The Bell System Technical Journal 46, 6 (July
1967), 1288–1295.

[9] KOTHANDARAMAN, C., IYER, S. K., AND IYER, S. S. Elec-
trically programmable fuse (efuse) using electromigration in sili-
cides. IEEE Electron Device Letters 23, 9 (Sept 2002), 523–525.

[10] OBERMAIER, J. OpenOCD Patch: flash/nor/stm32f1x: Added
RDP Level 2 support. http://openocd.zylin.com/4111,
2017. [Accessed 01-May-2017].

[11] SKOROBOGATOV, S. Flash memory ‘bumping’attacks. In Inter-
national Workshop on Cryptographic Hardware and Embedded
Systems (2010), Springer, pp. 158–172.

[12] SKOROBOGATOV, S., AND WOODS, C. Breakthrough Silicon
Scanning Discovers Backdoor in Military Chip. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012, pp. 23–40.

[13] SKOROBOGATOV, S. P., AND ANDERSON, R. J. Optical fault
induction attacks. In International workshop on cryptographic
hardware and embedded systems (2002), Springer, pp. 2–12.

[14] STMICROELECTRONICS. Datasheet STM32F303xB
STM32F303xC, May 2016. Rev 13.

[15] STMICROELECTRONICS. RM0091 Reference manual,
STM32F0x1/ STM32F0x2/ STM32F0x8 advanced ARM R©-based
32-bit MCUs, January 2017. Rev. 9.

[16] STROBEL, D., DRIESSEN, B., KASPER, T., LEANDER, G., OS-
WALD, D., SCHELLENBERG, F., AND PAAR, C. Fuming Acid and
Cryptanalysis: Handy Tools for Overcoming a Digital Locking
and Access Control System. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013, pp. 147–164.

[17] VARIOUS AUTHORS. Mikrocontroller.net: Meteotime Crypt.
https://www.mikrocontroller.net/topic/220947, 2011.
[In German; accessed 01-May-2017].

[18] WARREN, H. S. Hacker’s delight. Pearson Education, 2013.

http://openocd.zylin.com/4111
https://www.mikrocontroller.net/topic/220947

	Introduction
	STM32 Security Concept
	Flash Readout Protection Levels
	Readout Protection Design
	Flash Protection Logic

	Attacking the Security Concept
	Cold-Boot Stepping
	Concept of SRAM Snapshot Generation
	PoC: CBS Firmware Extraction
	Countermeasures against CBS

	Security Downgrade
	Concept of RDP Level Downgrade
	Proof-of-Concept: UV-C Security Downgrade
	Impact of Increased Precision
	Countermeasure: RDP Downgrade Detection

	Debug Interface Exploit
	Reverse Engineering
	Discovery and Analysis of the Vulnerability
	Proof-of-Concept: Code Extraction
	Consideration of Countermeasures

	Conclusion and Outlook
	Acknowledgments
	Availability

