Secure Systems Engineering

Sicherheit und Benutzbarkeit für Systeme

Die Digitalisierung aller Lebensbereiche nimmt unaufhaltsam zu. Die Forschungsabteilung Secure Systems Engineering unterstützt Kunden bei der Umsetzung sicherer und benutzbarer IT-Systeme für die Entwicklung digitaler Systeme. Dabei betrachten wir den gesamten Lebenszyklus: notwendige Maßnahmen zu Sicherheit und Datenschutz werden schon in der Konzeptionsphase eingebracht, im Entwicklungsprozess praktikabel umgesetzt und im laufenden Betrieb aufrechterhalten und angepasst. Abgerundet werden diese Arbeiten durch die Unterstützung bei der Zertifizierung nach etablierten Vorgehensmodellen, wie z.B. IT-Grundschutz, ISO27000 oder Common Criteria.

Dabei kann die Forschungsabteilung auf Erfahrungen aus zahlreichen Forschungs- und Entwicklungsprojekten zurückgreifen: Durch den Einsatz quantencomputerresistenter Verfahren werden Systeme zukunftssicher gestaltet, moderne kryptographische Verfahren und Protokolle garantieren, dass alle Anforderungen hinsichtlich Informationssicherheit und Datenschutz umgesetzt werden können und durch die frühzeitige Einbeziehung der unterschiedlichen Zielgruppen wird sichergestellt, dass die umgesetzten Sicherheitsmaßnahmen auch für alle benutzbar sind.

Angebote im Überblick

Unser Ziel ist es, in enger Zusammenarbeit mit unseren Kunden und Partnern die Fähigkeit zur Beurteilung der Sicherheit von Systemen und Produkten systematisch zu verbessern, um die Systemzuverlässigkeit zuverlässig zu bewerten, Systeme sicher zu gestalten und die Sicherheit nachhaltig sicher über deren gesamten Lebenszyklus zu bewahren.

Sicherheit bewerten      

  • Evaluierung der Sicherheit nach verschiedenen Bewertungskriterien
  • Durchführung von Bedrohungs- und Risikoanalysen
  • Analyse kryptographischer Verfahren
  • Analyse und Entwicklung von Zufallszahlengeneratoren
     

Sicherheit gestalten 

  • Entwicklungsbegleitende Unterstützung hinsichtlich Informationssicherheit und Datenschutz
  • Entwicklung von Krypto-, IT-Sicherheits- und Datenschutzkonzepten
  • Entwicklung sicherer Systemarchitekturen
  • Entwicklung von Lösungen unter Berücksichtigung von Benutzerfreundlichkeit, Datenschutz und Sicherheit 
  • Sichere Softwareentwicklung
  • Einbeziehung aktueller Technologien, z.B. Differential Privacy,
  • Quantencomputerresistente Kryptographie und Kryptoagilität
     

Sicherheit bewahren   

  • Security Monitoring
  • Vulnerability Management
  • Incident Management
  • Unterstützung bei der Durchführung von Sicherheitsaudits
  • Schulungen für die Bereiche Identity Management, Usable Privacy and Security, Post-quantum Cryptography,

Expertise

Sichere elektronische Identitäten (SDI) sind wesentliche Impulsgeber für die erfolgreiche Verlagerung von Geschäftsprozessen in die digitale Welt. Dies betrifft sowohl die Wirtschaft (z.B. Abschluss von Versicherungen oder Kontoeröffnung über das Internet) als auch die Verwaltung (nach dem Onlinezugangsgesetz müssen bis 2022 Verwaltungsleistungen von Bund und Ländern auch online angeboten werden). Anforderungen an die sichere Umsetzung elektronischer Identitäten werden, abhängig vom umzusetzenden Sicherheitsniveau, in der Durchführungsverordnung 2015/1502 (Mindestanforderungen an technische Spezifikationen und Verfahren für Sicherheitsniveaus elektronischer Identifizierungsmittel) abstrakt formuliert. Allerdings existieren auf Seiten aller Zielgruppen aktuell noch viele Herausforderungen, die dafür sorgen, dass SDIs nicht breit genutzt werden.

Die Forschungsarbeiten der Abteilung Secure Systems Engineering in diesem Bereich konzentrieren sich nicht nur auf die Sicherheit von Identitätslösungen, sondern auch auf Interoperabilität, Datenschutz und Benutzbarkeit. Wir unterstützen Identitätsprovider bei der Umsetzung dieser Ziele und erforschen und entwickeln neue Methoden zur Umsetzung sicherer elektronischer Identitäten.

Quantencomputer haben erhebliche Auswirkungen auf die Sicherheit heute eingesetzter asymmetrischer Kryptoverfahren. Ein von Shor 1994 entwickelter Algorithmus bricht auf einem Quantencomputer sehr effizient kryptographische Verfahren, deren Sicherheit auf dem Faktorisierungsproblem basieren (z.B. RSA-Verschlüsselung und RSA-Signatur) oder auf dem Problem der Berechnung diskreter Logarithmen (z.B. Signaturverfahren DSA oder Schlüsseleinigungsverfahren Diffie-Hellman).

Damit werden nahezu alle der heute eingesetzten Public-Key-Verfahren (Signatur-, Schlüsselaustausch- und asymmetrische Verschlüsselungsverfahren) unsicher. Dies betrifft die meisten aktuell verwendeten kryptographisch abgesicherten Internetverbindungen (z.B. über https oder Virtual Private Network (VPN)).

Unsere Forschungsschwerpunkte in diesem Bereich sind die Sicherheitsanalyse quantencomputerresistenter Verfahren, die Untersuchung hinsichtlich der Einsatzmöglichkeiten und Optimierungen auch für Geräte mit beschränkten Ressourcen und die Migration bestehender hin zu Quantencomputer-resistenten Systeme.

Im Zeitalter der wachsenden Datenströme werden in zunehmendem Maße automatisierte Datenanalysemethoden wie maschinelles Lernen (ML) eingesetzt. Die ML Modelle werden trainiert, um basierend auf ihren Trainingsdaten verallgemeinernde Voraussagen auf unbekannten Daten zu treffen. In den letzten Jahren hat sich zunehmend das Verständnis durchgesetzt, dass die Abstraktion, die ein trainiertes Modell von seinen Trainingsdaten darstellt, keineswegs reicht, um die Privatsphäre der Individuen, die durch die Trainingsdaten repräsentiert werden, zu schützen. So ist es möglich, von den Parametern eines Modells Rückschlüsse über die Trainingsdaten zu ziehen (z.B. über sog. Property Inference oder Model Inversion Attacken). Schutz bieten Mechanismen, wie zum Beispiel Differential Privacy (DP). Hierbei handelt es sich um ein mathematisches Framework, welches es erlaubt, aussagekräftige Analysen auf einer Gruppe von Individuen durchzuführen, während die Privatsphäre der einzelnen Individuen nicht verletzt wird. Dafür wird mathematisches Rauschen während der Analysen hinzugefügt. Auch in ML findet DP mittlerweile Anwendung. Das Rauschen wird dabei häufig in verschiedensten Formen während des Modelltrainings hinzugefügt und erlaubt es damit, die Privatsphäre der Individuen im Trainingsdatensatz zu schützen.

Häufig werden die Bedürfnisse, Kenntnisse und Fähigkeiten der angedachten Nutzer*innen nicht schon zu Beginn, sondern im besten Fall erst am Ende der Konzeptionsphase berücksichtigt. Üblicherweise werden zunächst die Sicherheitsziele („was muss geschützt werden?“) und daraus abgeleitet das Sicherheitsmodell („wie soll geschützt werden?“) festgelegt. Da das gewählte Sicherheitsmodell aber bereits die möglichen Interaktionsabläufe beeinflusst, führt dies in der Regel zu deutlichen Schwächen hinsichtlich der Benutzbarkeit.

Eine wichtige Anforderung an benutzbare Systeme ist, dass Nutzer*innen mit möglichst wenig Interaktion ihr Ziel erreichen. Aus UPS-Sicht ist dies aber nicht immer möglich bzw. sinnvoll. So erfordern rechtsverbindliche Vorgänge, z.B. bei der Vertragsunterzeichnung oder Einwilligung, ein aktives Einbinden der Nutzer*innen. Dabei darf die Interaktion nur bis zu dem Punkt minimiert werden, an dem das Vertrauen (Trust) in das System nicht abnimmt und die Nutzer*innen nicht unsicher über den Systemzustand zurückbleiben.

Schwerpunkte unserer Forschungsaktivitäten in diesem Bereich sind die Entwicklung von Methoden und Werkzeugen zur Beurteilung von Benutzbarkeit von und Vertrauen in Maßnahmen zu Sicherheit und Datenschutz und die Entwicklung von Modellen für die intuitive Benutzung solcher Maßnahmen. 

Ausgewählte Projekte

 

Sichere Weitergabe von Gesundheitsdaten

WerteRadar

Im Rahmen des interdisziplinäre Projekts WerteRadar wird eine interaktive Software für die reflektierte Weitergabe von Gesundheitsdaten entwickelt.

 

Sichere Digitale Identitäten

ONCE

Das vom Bundesministerium für Wirtschaft und Energie (BMWi) geförderte Innovationsprojekt ONCE soll es Bürgerinnen und Bürgern ermöglichen, sich sicher und nutzerfreundlich mit ihrem Smartphone auszuweisen.

 

Kryptobibliothek für langlebige Sicherheit

BOTAN

Im Rahmen des BSI-Projekt wurde mit BOTAN eine quelloffene, sichere, übersichtliche, kontrollierbare und gut dokumentierte Kryptobibliothek entwickelt, für möglichst viele Einsatzszenarien geeignet ist und auch in Anwendungen mit erhöhtem Sicherheitsbedarf eingesetzt werden kann.

Weitere Projekte

Mobile Services gewinnen immer weiter an Bedeutung zu zählen zu den wichtigesten gesellschaftlichen technologischen Trends. Insbesondere im Gesundheitswesen stellt diese Entwicklung eine große Herausforderung dar, denn der Umgang mit personenbezogenen Daten erfordert ein hohes Maß an Sicherheit.

Das Förderprojekt »Demonstration einer virtuellen, digitalen und mobilen Gesundheitskarte für Smartphones mit Secure Elements zur nutzerfreundlichen Identifikation und Authentifikation für medizinische Anwendungen« (VEGA) hat es sich zum Ziel gesetzt, die elektronische Versichertenidentität zu untersuchen und zu evaluieren. Basierend auf den Ergebnissen aus dem Projekt OPTIMOS 2.0 sollen mobile Endgeräte als Trägermedium der Gesundheitskarte nutzbar gemacht werden.

Neben dem Fraunhofer-Institut für Angewandte und Integrierte Sicherheit AISEC besteht das VEGA Konsortium aus der Bundesdruckerei GmbH, der DAK-Gesundheit, der cv cryptovision GmbH und der CompuGroup Medical Deutschland AG. Als assoziierte Partner beteiligen sich das Bundesamt für Sicherheit in der Informationstechnik und die T-Systems International GmbH.

Weitere Informationen zum Projekt finden Sie hier.

Publikationen

  • Sebastian Fischer, Katrin Neubauer, and Rudolf Hackenberg. “A Study About the Different Cate-gories of IoT in Scientific Publications”. In:CLOUD COMPUTING 2020, The Eleventh InternationalConference on Cloud Computing, GRIDs, and Virtualization. 2020, pp. 24–30.
  • Lukas Hinterberger, Sebastian Fischer, Bernhard Weber, Katrin Neubauer, and Rudolf Hackenberg.“IoT Device IdentificAtion and RecoGnition (IoTAG)”. In:CLOUD COMPUTING 2020, The EleventhInternational Conference on Cloud Computing, GRIDs, and Virtualization. 2020, pp. 17–23.
  • Katrin Neubauer, Sebastian Fischer, and Rudolf Hackenberg. “Security Risk Analysis of the CloudInfrastructure of Smart Grid and IoT - 4-Level-Trust-Model as a Security Solution”. In:InternationalJournal on Advances in Internet Technology13.1 (2020), pp. 11–20.
  • Sebastian Fischer, Katrin Neubauer, Lukas Hinterberger, Bernhard Weber, and Rudolf Hackenberg. “IoTAG: An Open Standard for IoT Device IdentificAtion and RecoGnition”. In: SECURWARE 2019, The Thirteenth International Conference on Emerging Security Information, Systems and Technologies. 2019, pp. 107–113.
  • Katrin Neubauer, Sebastian Fischer, and Rudolf Hackenberg. “Risk Analysis of the Cloud Infrastructure of Smart Grid and Internet of Things”. In: CLOUD COMPUTING 2019, The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization. 2019, pp. 82–87.
  • Katrin Neubauer, Sebastian Fischer, and Rudolf Hackenberg. “Work in Progress: Security Analysis for Safetycritical Systems: Smart Grid and IoT”. In: 32nd GI/ITG International Conference on Architecture of Computing Systems May 20 – 21, 2019, Technical University of Denmark, Copenhagen, Denmark Workshop Proceedings. 2019, pp. 101–106.
  • Tim Ohlendorf,Wolfgang Studier, and Marian Margraf. “Digitale Identitäten auf dem Smartphone”. In: Datenschutz und Datensicherheit-DuD 43.1 (2019), pp. 17–22.
  • Stefan Pfeiffer and Martin Seiffert. “Security-Management-as-a-Service”. In: Datenschutz und Datensicherheit-DuD 43.1 (2019), pp. 23–27.